I-Corps: A Framework for Streamlining the Development and Deployment of Generative Artificial Intelligence (AI) Models on Enterprise Data
I-Corps:简化企业数据生成人工智能 (AI) 模型的开发和部署的框架
基本信息
- 批准号:2335828
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact and commercial potential of this I-Corps project is the development of an artificial intelligence (AI) platform to streamline and enable data scientists and researchers to deploy AI faster and more easily. Currently, the development and deployment of these models often require substantial data, time, and financial resources, which can be challenging for many organizations, particularly small and medium-sized enterprises. The proposed technology is an AI framework that integrates advanced AI technologies with practical real-world applications. It is designed to streamline the creation and deployment of large language models and is adept at building generative models based on enterprise data while ensuring stringent safeguards for data protection and generation. In addition, the proposed platform provides flexible deployment options, functioning efficiently on public cloud platforms for cost-effectiveness and scalability, or within private clouds or on-premises servers for organizations that prioritize data privacy and security. The proposed technology may be used by data scientists and researchers to simplify model development, including data acquisition, manipulation, curation, feature generation, hyperparameter tuning, and deployment, to efficiently build and deploy state-of-the-art AI modeling based on their custom datasets.This I-Corps project is based on the development of a software platform for streamlining the deployment of generative Artificial Intelligence (AI) models including multimodal large language models. The proposed technology leverages research-based data engineering and machine learning software libraries, including data-plugins, service application programming interfaces, and reinforcement learning with human feedback and parameter optimization to simplify complex data procedures. In addition, reinforcement learning with human feedback and supervised fine tuning are used to enhance the performance of AI models and improve the security and safeguards, to make the deployment of these models safer and more reliable. The proposed technology is designed to operate on public cloud platforms or private clouds/on-premises servers, which prioritizes data privacy and security for enterprises. A focus on safeguarding large language models aligns with societal imperatives for secure and trustworthy AI applications. The proposed platform uses a user-friendly interface and data plugins for tasks like data acquisition, annotation, hyperparameter tuning, fine-tuning trillion parameter models on a single DGX server for graphics processing unit (GPU) scheduling to conduct model training and operating deployment on cloud systems or on on-promise cyberinfrastructure. By automating these tasks and streamlining development workflow, the platform reduces technical hurdles, saves time, and cuts costs. This enables efficient data processing and broadens access to advanced AI development for various professionals and researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目的广泛影响和商业潜力在于开发人工智能(AI)平台,使数据科学家和研究人员能够更快、更轻松地部署人工智能。目前,这些模型的开发和部署通常需要大量的数据、时间和财务资源,这对许多组织来说是具有挑战性的,尤其是中小型企业。提出的技术是一个人工智能框架,将先进的人工智能技术与现实世界的实际应用相结合。它旨在简化大型语言模型的创建和部署,并擅长基于企业数据构建生成模型,同时确保对数据保护和生成的严格保障。此外,提议的平台提供灵活的部署选项,在公共云平台上高效运行,以实现成本效益和可扩展性,或者在私有云或本地服务器上运行,为优先考虑数据隐私和安全性的组织提供服务。数据科学家和研究人员可以使用该技术来简化模型开发,包括数据采集、操作、管理、特征生成、超参数调优和部署,从而基于他们的自定义数据集有效地构建和部署最先进的人工智能建模。I-Corps项目的基础是开发一个软件平台,用于简化生成式人工智能(AI)模型的部署,包括多模态大型语言模型。提出的技术利用基于研究的数据工程和机器学习软件库,包括数据插件,服务应用程序编程接口,以及具有人类反馈和参数优化的强化学习,以简化复杂的数据过程。此外,利用人类反馈的强化学习和监督微调来增强人工智能模型的性能,提高安全性和保障措施,使这些模型的部署更安全、更可靠。拟议的技术旨在在公共云平台或私有云/本地服务器上运行,优先考虑企业的数据隐私和安全。专注于保护大型语言模型符合社会对安全和值得信赖的人工智能应用程序的要求。提议的平台使用用户友好的界面和数据插件,用于在单个DGX服务器上进行数据采集、注释、超参数调优、微调万亿参数模型等任务,用于图形处理单元(GPU)调度,以在云系统或承诺的网络基础设施上进行模型训练和操作部署。通过自动化这些任务和简化开发工作流程,该平台减少了技术障碍,节省了时间,并降低了成本。这可以实现高效的数据处理,并为各种专业人员和研究人员提供先进的人工智能开发机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peyman Najafirad其他文献
The Case for Integrated Advanced Technology in Applied Behavior Analysis
应用行为分析中集成先进技术的案例
- DOI:
10.1007/s41252-022-00309-y - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Leslie C. Neely;Amarie Carnett;J. Quarles;Hannah MacNaul;Se;Sakiko Oyama;Guenevere Chen;Kevin Desai;Peyman Najafirad - 通讯作者:
Peyman Najafirad
Distributed AI-Driven Search Engine on Visual Internet-of-Things for Event Discovery in the Cloud
视觉物联网上的分布式人工智能驱动搜索引擎,用于云中的事件发现
- DOI:
10.1109/sose55472.2022.9812698 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Arun Das;M. Roopaei;Mo M. Jamshidi;Peyman Najafirad - 通讯作者:
Peyman Najafirad
Artificial Intelligence in Tactical Human Resource Management: A Systematic Literature Review
战术人力资源管理中的人工智能:系统文献综述
- DOI:
10.1016/j.jjimei.2021.100047 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Alexis Megan Votto;Rohit Valecha;Peyman Najafirad;H. R. Rao - 通讯作者:
H. R. Rao
Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation (Preprint)
使用图拉普拉斯的第二特征值总结多种慢性疾病的复杂图形模型:算法开发和验证(预印本)
- DOI:
10.2196/preprints.16372 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Syed Hasib Akhter Faruqui;A. Alaeddini;Mike C Chang;S. Shirinkam;Carlos Jaramillo;Peyman Najafirad;Jing Wang;M. Pugh - 通讯作者:
M. Pugh
Natural Disaster Analytics using High Resolution Satellite Images
使用高分辨率卫星图像进行自然灾害分析
- DOI:
10.23919/wac55640.2022.9934752 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nihar Bendre;Neda Zand;Sujan Bhattarai;I. Corley;M. Jamshidi;Peyman Najafirad - 通讯作者:
Peyman Najafirad
Peyman Najafirad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peyman Najafirad', 18)}}的其他基金
Collaborative Research: Chameleon: A Large-Scale, Reconfigurable Experimental Environment for Cloud Research
协作研究:Chameleon:用于云研究的大规模、可重构实验环境
- 批准号:
1419165 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Cooperative Agreement
相似海外基金
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
EU-Funded
Law And Policy Framework For Remote Sensing In Maritime Enforcement
海事执法遥感法律和政策框架
- 批准号:
DP240100920 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
- 批准号:
NE/Z503502/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
- 批准号:
2326816 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant