CAREER:Correlated and Topological Quantum Transport in Novel 2D Crystals and Devices
职业:新型二维晶体和器件中的相关和拓扑量子传输
基本信息
- 批准号:1942942
- 负责人:
- 金额:$ 60.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical abstract: Quantum technologies are viewed by many as the next great technological revolution, which will deeply impact future economic growth and national security. The research aims to solve some of the most fundamental and critical problems confronting future quantum technologies by identifying novel materials that host on-demand quantum particles and phases. To achieve this goal, quantum properties of such new materials need to be protected from environmental noise. In two-dimensional crystals quantum electronic properties can be remarkably engineered, offering ability to protect phases from noise. Various interesting quantum states are explored here, focusing on the electronic states organized and protected by correlations and topology. The results will help push forward the frontier of fundamental quantum science, and enable new technical routes toward future quantum technologies. The project trains next generation of quantum scientists and engineers, as the experiments incorporate comprehensive and high-quality educational components for both graduate and undergraduate students. Various educational and outreach activities will be developed for encouraging and training students from underrepresented groups, and educating K-12 students and the public on quantum materials.Technical abstract: Topological quantum matter offers tremendous opportunities for discovering fundamentally new phenomena and applications in electronic systems. For instance, the search for a class of correlated topological quantum matter that hosts non-Abelian anyons is the first step towards developing topological quantum computation. The key to realizing the potential relies on the development of new quantum materials. A rich, largely unexplored material class for topological quantum matter is the family of two-dimensional (2D) crystals. In this project, the principle investigator aims to search for a variety of new, highly tunable topological and correlated quantum states of matter based on novel 2D crystals and their associated structures. Several candidate systems, including devices made from atomically thin WTe2, GdTe3 and their twisted bilayers, are explored. The investigator utilizes and innovates a set of nanofabrication and quantum transport measurement tools for investigating the novel quantum electronic phenomena in these systems, focusing on superconducting, magnetic, and/or topological phases, including the non-Abelian quantum states. The outcomes are expected to generate impact on several sub-fields, including 2D materials, topological matter, non-Abelian physics and quantum information devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性摘要:量子技术被许多人视为下一次伟大的技术革命,将对未来的经济增长和国家安全产生深远影响。该研究旨在通过识别承载按需量子粒子和相的新型材料来解决未来量子技术面临的一些最基本和最关键的问题。为了实现这一目标,需要保护这些新材料的量子特性免受环境噪声的影响。在二维晶体中,量子电子特性可以被显著地设计,提供保护相位免受噪声影响的能力。各种有趣的量子态在这里进行了探索,重点是电子状态组织和保护的相关性和拓扑结构。这些结果将有助于推动基础量子科学的前沿,并为未来的量子技术提供新的技术路线。该项目培养下一代量子科学家和工程师,因为实验为研究生和本科生提供了全面和高质量的教育内容。将开展各种教育和推广活动,鼓励和培训来自代表性不足群体的学生,并教育K-12学生和公众了解量子材料。技术摘要:拓扑量子物质为发现电子系统中的全新现象和应用提供了巨大的机会。例如,寻找一类包含非阿贝尔任意子的相关拓扑量子物质是发展拓扑量子计算的第一步。实现潜力的关键在于开发新的量子材料。拓扑量子物质的一个丰富的、基本上未被探索的材料类别是二维(2D)晶体家族。在这个项目中,主要研究者的目标是寻找各种新的,高度可调的拓扑和相关的量子态的物质的基础上新的二维晶体及其相关结构。几个候选系统,包括原子薄的WTe 2,GdTe 3和它们的扭曲双层制成的设备,进行了探索。研究人员利用并创新了一套纳米纤维和量子传输测量工具,用于研究这些系统中的新型量子电子现象,重点关注超导,磁性和/或拓扑相,包括非阿贝尔量子态。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A platform for far-infrared spectroscopy of quantum materials at millikelvin temperatures
毫开温度量子材料远红外光谱平台
- DOI:10.1063/5.0160321
- 发表时间:2023
- 期刊:
- 影响因子:1.6
- 作者:Onyszczak, Michael;Uzan-Narovlansky, Ayelet J.;Tang, Yue;Wang, Pengjie;Jia, Yanyu;Yu, Guo;Song, Tiancheng;Singha, Ratnadwip;Khoury, Jason F.;Schoop, Leslie M.
- 通讯作者:Schoop, Leslie M.
Surface-confined two-dimensional mass transport and crystal growth on monolayer materials
- DOI:10.1038/s44160-023-00442-z
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Yanyu Jia;Fang Yuan;G. Cheng;Yue Tang;Guo Yu;Tiancheng Song;Pengjie Wang;R. Singha;Ayelet J. Uzan-Narovlansky;Michael Onyszczak;Kenji Watanabe;T. Taniguchi;N. Yao;L. Schoop;Sanfeng Wu
- 通讯作者:Yanyu Jia;Fang Yuan;G. Cheng;Yue Tang;Guo Yu;Tiancheng Song;Pengjie Wang;R. Singha;Ayelet J. Uzan-Narovlansky;Michael Onyszczak;Kenji Watanabe;T. Taniguchi;N. Yao;L. Schoop;Sanfeng Wu
Landau quantization and highly mobile fermions in an insulator
- DOI:10.1038/s41586-020-03084-9
- 发表时间:2020-10
- 期刊:
- 影响因子:64.8
- 作者:Pengjie Wang;Guo Yu;Yanyu Jia;Michael Onyszczak;F. A. Cevallos;Shiming Lei;S. Klemenz;Kenji Watanabe;T. Taniguchi;R. Cava;L. Schoop;Sanfeng Wu
- 通讯作者:Pengjie Wang;Guo Yu;Yanyu Jia;Michael Onyszczak;F. A. Cevallos;Shiming Lei;S. Klemenz;Kenji Watanabe;T. Taniguchi;R. Cava;L. Schoop;Sanfeng Wu
Evidence for a monolayer excitonic insulator
- DOI:10.1038/s41567-021-01422-w
- 发表时间:2021-12-23
- 期刊:
- 影响因子:19.6
- 作者:Jia, Yanyu;Wang, Pengjie;Wu, Sanfeng
- 通讯作者:Wu, Sanfeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanfeng Wu其他文献
Search for $eta$ and $eta^prime o pi^+ e^- ar{
u}_e +c.c.$ decays in $jpsi o phi eta$ and $phi eta^prime$
搜索 $eta$ 和 $eta^prime o pi^ e^- ar{
u}_e c.c.$ 在 $jpsi o phi eta$ 和 $phi eta^ 中衰减
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Ablikim;M. Achasov;O. Albayrak;D. Ambrose;F. An;Q. An;J. Bai;R. Ferroli;Y. Ban;J. Becker;J. Bennett;M. Bertani;J. Bian;E. Boger;E. Boger;O. Bondarenko;I. Boyko;R. Briere;V. Bytev;H. Cai;X. Cai;O. Cakir;A. Calcaterra;A. Calcaterra;A. Calcaterra;G. Cao;S. Cetin;J. Chang;G. Chelkov;G. Chelkov;G. Chen;H. Chen;Jiangchuan Chen;M. Chen;S. Chen;X. Chen;Y. Chen;H. Cheng;Y. Chu;D. Cronin;H. Dai;J. Dai;D. Dedovich;Z. Deng;A. Denig;I. Denysenko;M. Destefanis;W. Ding;Y. Ding;L. Dong;M. Dong;S. Du;J. Fang;S. Fang;L. Fava;C. Feng;P. Friedel;C. Fu;J. Fu;Y. Gao;C. Geng;K. Goetzen;W. Gong;W. Gradl;M. Greco;M. Gu;Y. Gu;Y. Guan;N. Guler;N. Guler;A. Guo;L. Guo;T. Guo;Y. Guo;Y. Han;F. Harris;K. He;M. He;Z. He;T. Held;Y. Heng;Z. Hou;C. Hu;H. Hu;J. Hu;T. Hu;G. Huang;G. Huang;J. Huang;L. Huang;X. Huang;Y. Huang;Y. Huang;T. Hussain;C. Ji;Q. Ji;Q. Ji;X. Ji;X. Ji;L. Jiang;X. Jiang;J. Jiao;Z. Jiao;D. Jin;S. Jin;F. Jing;N. Kalantar;M. Kavatsyuk;B. Kopf;M. Kornicer;W. Kuehn;W. Lai;J. Lange;M. Leyhe;C. Li;Cheng Li;Cui Li;D. Li;F. Li;G. Li;H. Li;J. Li;Kang Li;Lei Li;Q. Li;S. Li;W. Li;W. Li;X. Li;X. Li;X. Q. Li;X. Li;Z. Li;H. Liang;Y. F. Liang;Y. Liang;G. Liao;X. Liao;D. Lin;B. Liu;Chenli Liu;C. Liu;F. Liu;F. Liu;Feng. Liu;H. Liu;Hongbang Liu;H. Liu;H. Liu;H. Liu;J. Liu;K. Liu;K. Liu;Kai Liu;P. Liu;Qian Liu;S. Liu;Xiaoxi Liu;Y. Liu;Z. Liu;Zhiqiang Liu;Zhiqing Liu;H. Loehner;G. Lu;H. Lu;J. Lu;Q. Lu;X. Lu;Y. Lu;C. Luo;M. Luo;T. Luo;X. Luo;M. Lv;C. Ma;F. Ma;H. Ma;Q. Ma;S. Ma;T. Ma;X. Ma;F. Maas;M. Maggiora;Q. A. Malik;Y. Mao;Z. Mao;J. Messchendorp;J. Min;T. Min;R. Mitchell;X. Mo;H. Moeini;C. Morales;K. Morales;N. Muchnoi;H. Muramatsu;Y. Nefedov;C. Nicholson;I. Nikolaev;Z. Ning;S. Olsen;Q. Ouyang;S. Pacetti;Jee Woo Park;M. Pelizaeus;H. Peng;K. Peters;J. Ping;R. Ping;R. Poling;E. Prencipe;M. Qi;S. Qian;C. Qiao;L. Qin;X. Qin;Y. Qin;Z. Qin;J. Qiu;K. H. Rashid;G. Rong;X. Ruan;A. Sarantsev;H. Sazak;B. D. Schaefer;M. Shao;C. Shen;C. Shen;X. Shen;H. Sheng;M. Shepherd;W. Song;X. Song;S. Spataro;B. Spruck;D. Sun;G. Sun;J. Sun;S. Sun;Y. Sun;Y. Sun;Z. Sun;Zhihu Sun;C. Tang;X. Tang;I. Tapan;E. Thorndike;D. Toth;M. Ullrich;I. Uman;I. Uman;G. Varner;B. Wang;Dayong Wang;D. Wang;K. Wang;L. Wang;L. Wang;Meng Wang;P. Wang;P. Wang;Q. Wang;S. Wang;X. Wang;X. L. Wang;Y. Wang;Y. Wang;Y. Q. Wang;Z. H. Wang;Z. Wang;Z. Wang;D. Wei;J. Wei;P. Weidenkaff;Q. Wen;S. Wen;Michael W. Werner;U. Wiedner;L. Wu;N. Wu;Sanfeng Wu;W. Wu;Z. Wu;L. Xia;Y. Xia;Z. Xiao;Y. Xie;Q. L. Xiu;G. Xu;Guo;Q. Xu;Qingnian Xu;X. Xu;Zhenli Xu;F. Xue;Z. Xue;L. Yan;W. Yan;Y. Yan;H. Yang;Ya;Y. Yang;H. Ye;M. Ye;M. Ye;B. Yu;C. Yu;Hao Yu;J. Yu;S. Yu;C. Yuan;Y. Yuan;A. Zafar;A. Zallo;S. Zang;Y. Zeng;B. Zengin;B. Zhang;B. Zhang;C. Zhang;C. Zhang;D. Zhang;H. Zhang;H. Zhang;J. Zhang;J. Zhang;J. Zhang;J. Zhang;Li;R. Zhang;S. Zhang;X. J. Zhang;X. Zhang;Y. Zhang;Y. Zhang;Z. P. Zhang;Z. Zhang;Zhenghao Zhang;G. Zhao;H. Zhao;J. Zhao;K. Zhao;Lei Zhao;Ling Zhao;M. Zhao;Q. Zhao;S. Zhao;T. Zhao;X. Zhao;Y. Zhao;Z. Zhao;A. Zhemchugov;A. Zhemchugov;B. Zheng;J. Zheng;Y. Zheng;B. Zhong;L. Zhou;X. Zhou;X. Zhou;X. Zhou;C. Zhu;K. Zhu;K. Zhu;S. Zhu;X. Zhu;Y. Zhu;Y. Zhu;Y. S. Zhu;Z. Zhu;J. Zhuang;B. Zou;J. Zou - 通讯作者:
J. Zou
Atomic Resolution Imaging of Highly Air-Sensitive Monolayer and Twisted-Bilayer WTe2.
高空气敏感单层和扭曲双层 WTe2 的原子分辨率成像。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fang Yuan;Yanyu Jia;G. Cheng;R. Singha;Shiming Lei;N. Yao;Sanfeng Wu;L. Schoop - 通讯作者:
L. Schoop
Topological insulator behavior in monolayer WTe2
单层 WTe2 中的拓扑绝缘体行为
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Z. Fei;T. Palomaki;Sanfeng Wu;Wenjin Zhao;Xinghan Cai;Bosong Sun;P. Nguyen;J. Finney;Xiaodong Xu;D. Cobden - 通讯作者:
D. Cobden
Charge-neutral electronic excitations in quantum insulators
量子绝缘体中的电荷中性电子激发
- DOI:
10.1038/s41586-024-08091-8 - 发表时间:
2024-11-13 - 期刊:
- 影响因子:48.500
- 作者:
Sanfeng Wu;Leslie M. Schoop;Inti Sodemann;Roderich Moessner;Robert J. Cava;N. P. Ong - 通讯作者:
N. P. Ong
Author Correction: Landau quantization and highly mobile fermions in an insulator
作者更正:朗道量子化和绝缘体中的高移动费米子
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:64.8
- 作者:
Pengjie Wang;Guo Yu;Yanyu Jia;Michael Onyszczak;F. A. Cevallos;Shiming Lei;S. Klemenz;Kenji Watanabe;T. Taniguchi;R. Cava;L. Schoop;Sanfeng Wu - 通讯作者:
Sanfeng Wu
Sanfeng Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
- 批准号:
23H01091 - 财政年份:2023
- 资助金额:
$ 60.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Designing topological superconductivity and correlated phases in Van der Waals materials
职业:设计范德华材料中的拓扑超导性和相关相
- 批准号:
2238748 - 财政年份:2023
- 资助金额:
$ 60.26万 - 项目类别:
Continuing Grant
CAREER: Discovery and Characterization of Strongly Correlated Topological Materials
职业:强相关拓扑材料的发现和表征
- 批准号:
2236528 - 财政年份:2023
- 资助金额:
$ 60.26万 - 项目类别:
Continuing Grant
CAREER: GHz imaging of strongly correlated and topological phenomena in moire materials
职业:莫尔材料中强相关和拓扑现象的 GHz 成像
- 批准号:
2240114 - 财政年份:2023
- 资助金额:
$ 60.26万 - 项目类别:
Continuing Grant
Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
- 批准号:
2226666 - 财政年份:2023
- 资助金额:
$ 60.26万 - 项目类别:
Standard Grant
Topological response in strongly correlated materials
强相关材料中的拓扑响应
- 批准号:
569045-2022 - 财政年份:2022
- 资助金额:
$ 60.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
- 批准号:
RGPIN-2019-04321 - 财政年份:2022
- 资助金额:
$ 60.26万 - 项目类别:
Discovery Grants Program - Individual
Physics of strongly-correlated topological spin-triplet superconductivity with uranium atom
铀原子强相关拓扑自旋三重态超导物理
- 批准号:
22H04933 - 财政年份:2022
- 资助金额:
$ 60.26万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
- 批准号:
RGPIN-2019-04321 - 财政年份:2021
- 资助金额:
$ 60.26万 - 项目类别:
Discovery Grants Program - Individual
Numerical study of the bulk-edge correspondence in strongly correlated higher-order topological insulators
强相关高阶拓扑绝缘体体边对应的数值研究
- 批准号:
21K03395 - 财政年份:2021
- 资助金额:
$ 60.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)