CAREER: Detection and localization of communication signals during motion in the electrosensory system.

职业:电传感系统运动过程中通信信号的检测和定位。

基本信息

  • 批准号:
    1942960
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Localizing the source of a signal is difficult, particularly when the signal is faint and moving. The ability of the sensory system to extract spatial information has been explored in various systems but scientists still do not understand well the mechanisms that allow this localization process to remain accurate in challenging conditions, particularly when movements occur. In order to identify generic mechanisms that enhance the localization process across sensory systems, a unique organism will be examined. Weakly electric fish must detect and localize other individuals based on the electric signal they emit. The localization process has similarities with both the visual system, where a map is created at the first level of the sensory system, and the auditory system where location is computed by comparing inputs at the two ears. Since these fish localize each other while moving, they are well suited to address the question: are there generic mechanisms, similar across modalities, that enhance the localization process in difficult and changing conditions. Experiments characterizing spatial interactions of these fish, physiological recordings that identify neural mechanisms and modelling studies recapitulating the proposed neural dynamic will allow a deeper understanding of this localization process. A robotic interface will allow a precise interaction with the experimental fish and will also permit to get high school students involved in the project by having them contribute to the design of the robotic component and then participate in its operation during experiments.The goal of this project is to determine how motion influences the coding of weak electrosensory signals and how network dynamic is adapted to realistic movement patterns. Social interactions among these fish rely on the detection and localization of the electric field each fish generates. Although temporal coding of conspecific signals is thoroughly understood, nothing is known about how the location of a conspecific is extracted and how motion affects the detection and localization process. The experiments will provide new insight into sensory processing by showing how realistic signals -that include movement- are encoded and how network dynamic is adapted to typical movements in order to support the efficient extraction of weak cues. The hypothesis is that the encoding of both the presence and location of a conspecific will be enhanced when sender and receiver move in a realistic manner. It is further hypothesized that feedback inputs will sharpen the spatial representation and enhance the detectability of moving signals. To test the hypotheses, the project is divided in 3 aspects: the signal, the coding accuracy and the influence of feedback. The sensory flow experienced by the animal will be characterized via behavioral recordings and 3D modelling of the sensory environment. Neural recordings in the primary sensory area will allow clarifying how signal coding is affected by motion. Finally, the network mechanisms involved in shaping sensory processing will be identified by pharmacological manipulation of feedback pathways and large-scale modelling of the network.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
定位信号源是困难的,特别是当信号微弱且移动时。感觉系统提取空间信息的能力已经在各种系统中进行了探索,但科学家们仍然没有很好地理解使这种定位过程在具有挑战性的条件下保持准确的机制,特别是当运动发生时。为了确定增强跨感觉系统的定位过程的通用机制,将检查一种独特的生物体。弱电鱼必须根据它们发出的电信号来检测和定位其他个体。定位过程与视觉系统和听觉系统都有相似之处,视觉系统在感觉系统的第一级创建地图,听觉系统通过比较两只耳朵的输入来计算位置。由于这些鱼在移动时相互定位,它们非常适合解决这个问题:是否有通用的机制,跨模态相似,在困难和不断变化的条件下增强定位过程。这些鱼的空间相互作用,生理记录,确定神经机制和模拟研究概括提出的神经动态的实验特征将允许更深入地了解这个本地化过程。一个机器人接口将允许与实验鱼进行精确的互动,也将允许高中学生参与该项目,让他们参与机器人组件的设计,然后在实验过程中参与其操作。该项目的目标是确定运动如何影响微弱的电感觉信号的编码,以及网络动态如何适应现实的运动模式。这些鱼之间的社会互动依赖于每种鱼产生的电场的检测和定位。虽然同种信号的时间编码被彻底理解,但关于同种的位置如何被提取以及运动如何影响检测和定位过程还一无所知。这些实验将通过展示包括运动在内的真实信号是如何编码的,以及网络动态如何适应典型运动,以支持有效提取弱线索,从而为感官处理提供新的见解。该假设是,编码的存在和位置的同种将被增强时,发送者和接收者以现实的方式移动。进一步假设反馈输入将锐化空间表示并增强运动信号的可检测性。为了验证假设,本课题从信号、编码精度和反馈影响三个方面进行了研究。动物所经历的感觉流将通过行为记录和感觉环境的3D建模来表征。初级感觉区的神经记录将有助于澄清信号编码如何受到运动的影响。最后,参与塑造感觉处理的网络机制将通过反馈途径的药理学操纵和网络的大规模建模来确定。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gary Marsat其他文献

Efficient inhibition of bursts by bursts in the auditory system of crickets
有效抑制蟋蟀听觉系统中的爆发

Gary Marsat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gary Marsat', 18)}}的其他基金

Collaborative Research: Co-evolution of Communication Signals with Central Sensory Processing Mechanisms
合作研究:通信信号与中央感觉处理机制的共同进化
  • 批准号:
    1557846
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

NSF Convergence Accelerator Track L: UAV-assisted dual-comb spectroscopic detection, localization, and quantification of multiple atmospheric trace-gas emissions
NSF 收敛加速器轨道 L:无人机辅助的双梳光谱检测、定位和多种大气痕量气体排放的量化
  • 批准号:
    2344395
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Data Plane Programming Approach for Real-time Failure Detection and Localization
用于实时故障检测和定位的数据平面编程方法
  • 批准号:
    23K16875
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Malicious anomaly detection/localization in 5G systems through group behaviour profiling based on federated machinelLearning
通过基于联邦机器学习的群体行为分析来检测/定位 5G 系统中的恶意异常
  • 批准号:
    567658-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Alliance Grants
Elements: An ML Ecosystem of Filament Detection: Classification, Localization, and Segmentation
元素:细丝检测的 ML 生态系统:分类、定位和细分
  • 批准号:
    2209912
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Change Point Detection and Localization in High-Dimensions: Theory and Methods
DMS-EPSRC:高维变化点检测和定位:理论和方法
  • 批准号:
    EP/V013432/1
  • 财政年份:
    2021
  • 资助金额:
    $ 70万
  • 项目类别:
    Research Grant
Reinforcement Learning for Stroke Lesion Detection and Localization
中风病变检测和定位的强化学习
  • 批准号:
    564051-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 70万
  • 项目类别:
    University Undergraduate Student Research Awards
Machine Learning-Assisted Underwater Object Detection, Localization and Tracking based on Heterogeneous Underwater Networks
基于异构水下网络的机器学习辅助水下物体检测、定位和跟踪
  • 批准号:
    557982-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 70万
  • 项目类别:
    Postdoctoral Fellowships
NSF Convergence Accelerator Track D: Intelligent Surveillance Platform for Damage Detection and Localization of Civil Infrastructure
NSF 融合加速器轨道 D:用于民用基础设施损坏检测和定位的智能监控平台
  • 批准号:
    2040665
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Change-Point Detection and Localization in High Dimensions: Theory and Methods
DMS-EPSRC:高维变化点检测和定位:理论和方法
  • 批准号:
    2015489
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Obstacle detection, localization, and avoidance for autonomous robotic seeding**
自主机器人播种的障碍物检测、定位和规避**
  • 批准号:
    533707-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了