CAREER: Physical Side-Channels Beyond Cryptography: Transforming the Side-Channel Framework for Deep Learning

职业:超越密码学的物理侧通道:转变深度学习的侧通道框架

基本信息

  • 批准号:
    1943245
  • 负责人:
  • 金额:
    $ 43.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Machine Learning (ML) classifiers are hard to develop and are used in safety-critical applications like autonomous driving. Exposing the details of an ML classifier thus results in intellectual property theft and also makes it easier to be fooled by adversaries. Unfortunately, the implementation of an ML classifier may leak information about its inner workings. The primary research goal of this project is to develop secure ML classifier implementations. This work specifically addresses the fundamental electromagnetic and power side-channel vulnerabilities of physical implementations of ML classifiers.The intellectual merit of the project is to extend the physical side-channel analysis framework beyond cryptography for securing deep neural network (NN) classifiers. Although there is research on the mathematical analysis and digital side-channels of NN model extraction, physical side-channels are largely unexplored. The research tasks are to design physical side-channel resilient NN components, to integrate the developed components into a high-level synthesis framework for automatic generation of protected NN hardware accelerators, and to evaluate/benchmark side-channel security and countermeasure overheads.The broader impact of this project includes disseminating publications, distributing open-source hardware and software, and bridging the research on NNs and hardware security. The project also aims developing a college course to teach hardware security for NNs with hands-on experiments. This work may also help the Executive Order on Maintaining American Leadership in Artificial Intelligence, by evaluating the security of the Artificial Intelligence standards being put forward by the National Institute of Standards and Technology (NIST).This project will use a repository with multiple back-up servers to store and log the data, and the major results and hardware and software products will be made publicly available by using resources over the world wide web. Further information on the project repository will be made accessible at https://research.ece.ncsu.edu/aaysu/research/MLSec-CAREER-nsf.html. The repository is intended to be actively maintained for the duration of the project and 5 years after its completion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)分类器很难开发,并且被用于自动驾驶等安全关键应用中。因此,暴露ML分类器的详细信息会导致知识产权被盗,也更容易被对手愚弄。不幸的是,ML分类器的实现可能会泄露有关其内部工作的信息。该项目的主要研究目标是开发安全的ML分类器实现。这项工作专门解决了ML分类器物理实现的基本电磁和功率侧通道漏洞。该项目的智能优点是将物理侧通道分析框架扩展到密码学之外,以确保深度神经网络(NN)分类器的安全。虽然已经有关于神经网络模型提取的数学分析和数字旁路的研究,但物理旁路在很大程度上还没有被探索。研究任务是设计物理侧通道弹性神经网络组件,将开发的组件集成到一个高层综合框架中以自动生成受保护的神经网络硬件加速器,评估/基准侧通道安全和对抗开销,该项目的更广泛影响包括传播出版物、分发开源硬件和软件,以及将NNS和硬件安全的研究联系起来。该项目还旨在开发一门大学课程,通过动手实验为NNS教授硬件安全。这项工作还可能通过评估美国国家标准与技术研究所(NIST)提出的人工智能标准的安全性,来帮助维持美国在人工智能领域的领导地位的行政命令。该项目将使用一个具有多个备份服务器的存储库来存储和记录数据,主要结果以及硬件和软件产品将通过使用万维网上的资源公开提供。有关项目储存库的更多信息将在https://research.ece.ncsu.edu/aaysu/research/MLSec-CAREER-nsf.html.上提供该储存库将在项目期间和完成后5年内积极维护。这一奖励反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hardware-Software Co-design for Side-Channel Protected Neural Network Inference
用于侧通道保护神经网络推理的硬件-软件协同设计
ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Hardware Masking
  • DOI:
    10.46586/tches.v2022.i1.506-556
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Dubey;Afzal Ahmad;M. A. Pasha;Rosario Cammarota;Aydin Aysu
  • 通讯作者:
    Anuj Dubey;Afzal Ahmad;M. A. Pasha;Rosario Cammarota;Aydin Aysu
BoMaNet: Boolean Masking of an Entire Neural Network
Guarding Machine Learning Hardware Against Physical Side-channel Attacks
High-Fidelity Model Extraction Attacks via Remote Power Monitors
通过远程功率监视器进行高保真模型提取攻击
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aydin Aysu其他文献

Enabling Secure and Efficient Sharing of Accelerators in Expeditionary Systems
实现远征系统中加速器的安全高效共享
  • DOI:
    10.1007/s41635-024-00148-4
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arsalan Ali Malik;Emre Karabulut;Amro Awad;Aydin Aysu
  • 通讯作者:
    Aydin Aysu
A Full-Stack Approach for Side-Channel Secure ML Hardware
侧通道安全机器学习硬件的全栈方法
Binary Ring-LWE hardware with power side-channel countermeasures
具有电源侧信道对策的二进制 Ring-LWE 硬件
MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks
MaskedNet:针对电源侧通道攻击的安全推理途径
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Dubey;Rosario Cammarota;Aydin Aysu
  • 通讯作者:
    Aydin Aysu
High-Level Synthesis of Number-Theoretic Transform: A Case Study for Future Cryptosystems
数论变换的高级综合:未来密码系统的案例研究

Aydin Aysu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aydin Aysu', 18)}}的其他基金

SaTC: CORE: Small: An Automated Framework for Mitigating Single-Trace Side-Channel Leakage
SaTC:核心:小型:用于减轻单迹侧通道泄漏的自动化框架
  • 批准号:
    2241879
  • 财政年份:
    2023
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Standard Grant
SHF: Small: A New Approach for Hardware Design of High-Precision Discrete Gaussian Sampling
SHF:小:高精度离散高斯采样硬件设计的新方法
  • 批准号:
    2146881
  • 财政年份:
    2022
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Secure Instruction Set Extensions for Lattice-Based Post-Quantum Cryptosystems
CRII:SaTC:基于格的后量子密码系统的安全指令集扩展
  • 批准号:
    1850373
  • 财政年份:
    2019
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Standard Grant

相似国自然基金

面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Standard Grant
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
  • 批准号:
    23K11102
  • 财政年份:
    2023
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CRII: SaTC: Physical Side-Channel Attacks in Biometric System
CRII:SaTC:生物识别系统中的物理侧信道攻击
  • 批准号:
    2302084
  • 财政年份:
    2022
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Leveraging Physical Side-Channel Information to Build Detection-Based Rowhammer Defenses
SaTC:核心:小型:利用物理侧信道信息构建基于检测的 Rowhammer 防御
  • 批准号:
    2147217
  • 财政年份:
    2021
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Standard Grant
Cyber physical security of Congestion Management in Distribution Networks using Demand Side Management
使用需求侧管理的配电网络拥塞管理的网络物理安全
  • 批准号:
    534672-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
SaTC: CORE: Small: Leveraging Physical Side-Channel Information to Build Detection-Based Rowhammer Defenses
SaTC:核心:小型:利用物理侧信道信息构建基于检测的 Rowhammer 防御
  • 批准号:
    2038076
  • 财政年份:
    2021
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Standard Grant
CRII: SaTC: Physical Side-Channel Attacks in Biometric System
CRII:SaTC:生物识别系统中的物理侧信道攻击
  • 批准号:
    2104520
  • 财政年份:
    2021
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Standard Grant
EAGER: SARE: Detecting Zero-Day Side-channel Attacks in Sensor Rich Cyber-Physical Systems
EAGER:SARE:检测传感器丰富的网络物理系统中的零日旁道攻击
  • 批准号:
    2028782
  • 财政年份:
    2020
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Standard Grant
Cyber physical security of Congestion Management in Distribution Networks using Demand Side Management
使用需求侧管理的配电网络拥塞管理的网络物理安全
  • 批准号:
    534672-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Objective physical evaluation of side effects for chemotherapy using wearable devices
使用可穿戴设备客观评估化疗副作用
  • 批准号:
    18K15316
  • 财政年份:
    2018
  • 资助金额:
    $ 43.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了