CAREER: Compilation Processes to Enhance Dataflow Optimizations
职业:增强数据流优化的编译过程
基本信息
- 批准号:1943319
- 负责人:
- 金额:$ 54.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Supercomputing drives advances in many areas of science and engineering. Challenges ranging from understanding climate change, to discovering new materials for solar cells, to curing cancer, depend on the power of leadership-class supercomputing resources. Resources of this class cost tens of millions to set up and operate, so the scientific applications using them should produce the largest scientific advancement possible, in the shortest amount of time, using the least amount of energy. However, scientific applications operate inefficiently in that they typically perform operations at less than 30 percent of the potential maximum rate, and often further less than that. Hand-optimizing scientific applications by rewriting the code can increase the operation rate, but also introduces code complexities that make code difficult to understand and maintain, impeding scientific progress. Automated code optimization preserves code maintainability and has the potential to significantly increase operation rates. However, there are obstacles, such as the use of shared mathematical libraries that block automated optimization. This project seeks to overcome key obstacles to automated code optimization for scientific applications. An integrated education plan will engage at-risk youth from local Idaho high schools in computer science, building on a successful pilot program that brought pregnant and parenting teens together with computer science students.The research goal of this project is to unblock memory optimizations that depend on a code transformation performed by compilers called function inlining that is crucial to subsequent code transformation. Interactions with memory are expensive and application designers depend on them to support software design patterns. Application designers often use library calls or function pointers to break software into small, reusable modular components. However, doing so prevents inlining and limits the efficacy of transformations contributing to memory optimizations. In response to this problem, the project will make function bodies available earlier and in a form that is amenable to transformations. To accomplish this, the project will develop a new early linking stage using a high-level compiler internal representation, resulting in large regions of application code expressed in a structure ideal for transformation. This approach allows for inlining and subsequent loop transformations, thus removing the barrier resulting from using precompiled libraries, and some of the barriers from function pointer use. Project objectives are to: (1) enable inlining of precompiled libraries, (2) enable inlining over function pointers, and (3) provide customized optimization planning.This project is jointly funded by CCF Division Software and Hardware Foundations Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超级计算推动了许多科学和工程领域的进步。从了解气候变化到发现太阳能电池的新材料,再到治疗癌症,这些挑战都取决于领导级超级计算资源的能力。这类资源的建立和运行花费了数千万美元,因此使用它们的科学应用应该在最短的时间内产生最大的科学进步,使用最少的能源。然而,科学应用程序的运行效率低下,因为它们通常以低于潜在最大速率的30%执行操作,并且通常进一步低于该速率。通过重写代码来手动优化科学应用程序可以提高运算速度,但也会引入代码复杂性,使代码难以理解和维护,从而阻碍科学进步。自动化代码优化保留了代码的可维护性,并有可能显著提高操作率。然而,也存在一些障碍,例如使用共享的数学库来阻止自动优化。该项目旨在克服科学应用程序自动化代码优化的关键障碍。一个综合教育计划将吸引来自当地爱达荷州高中的高危青少年学习计算机科学,该计划建立在一个成功的试点计划的基础上,该计划将怀孕和育儿的青少年与计算机科学专业的学生聚集在一起。该项目的研究目标是解锁内存优化,该优化依赖于编译器执行的代码转换,称为函数内联,这对随后的代码转换至关重要。与内存的交互是昂贵的,应用程序设计人员依赖它们来支持软件设计模式。应用程序设计人员经常使用库调用或函数指针将软件分解为小的、可重用的模块化组件。但是,这样做会阻止内联并限制有助于内存优化的转换的功效。针对这一问题,该项目将使功能机构更早地可用,并以一种易于转换的形式提供。为了实现这一目标,该项目将使用高级编译器内部表示开发一个新的早期链接阶段,从而导致大面积的应用程序代码以适合转换的结构表示。这种方法允许内联和后续的循环转换,从而消除了使用预编译库造成的障碍,以及使用函数指针造成的一些障碍。项目目标是:(1)启用预编译库的内联,(2)启用函数指针上的内联,和(3)提供定制的优化规划。该项目由CCF部门软件和硬件基础计划以及刺激竞争研究的既定计划(EPSCoR)联合资助该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Techniques for Managing Polyhedral Dataflow Graphs
管理多面体数据流图的技术
- DOI:10.1007/978-3-030-99372-6_9
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shankar, Ravi;Orenstein, Aaron;Rift, Anna;Popoola, Tobi;MacDonald;Yang, Shuai;Mikesell, T. Dylan;Olschanowsky, Catherine
- 通讯作者:Olschanowsky, Catherine
Code Synthesis for Sparse Tensor Format Conversion and Optimization
稀疏张量格式转换和优化的代码综合
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Popoola, Tobi;Zhao, Tuowen;St. George, Aaron;Bhetwal, Kalyan;Strout, Michelle;Hall, Mary;Olschanowsky, Catherine
- 通讯作者:Olschanowsky, Catherine
An Object-Oriented Interface to The Sparse Polyhedral Library
稀疏多面体库的面向对象接口
- DOI:10.1109/compsac51774.2021.00275
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Popoola, Tobi;Shankar, Ravi;Rift, Anna;Singh, Shivani;Davis, Eddie C.;Strout, Michelle Mills;Olschanowsky, Catherine
- 通讯作者:Olschanowsky, Catherine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Olschanowsky其他文献
Accelerating the Lagrangian particle tracking of residence time distributions and source water mixing towards large scales
加速大尺度停留时间分布和源水混合的拉格朗日粒子追踪
- DOI:
10.1016/j.cageo.2021.104760 - 发表时间:
2021-02 - 期刊:
- 影响因子:4.4
- 作者:
Chen Yang;You-Kuan Zhang;Xiuyu Liang;Catherine Olschanowsky;Xiaofan Yang;Reed Maxwell - 通讯作者:
Reed Maxwell
Catherine Olschanowsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Olschanowsky', 18)}}的其他基金
SHF: Small: The Loop Chain Abstraction for Balancing Locality and Parallelism
SHF:小:平衡局部性和并行性的循环链抽象
- 批准号:
1700723 - 财政年份:2016
- 资助金额:
$ 54.42万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: An Inspector/Executor Compilation Framework for Irregular Applications
SHF:Medium:协作研究:针对不规则应用的检查器/执行器编译框架
- 批准号:
1563818 - 财政年份:2016
- 资助金额:
$ 54.42万 - 项目类别:
Standard Grant
SHF: Small: The Loop Chain Abstraction for Balancing Locality and Parallelism
SHF:小:平衡局部性和并行性的循环链抽象
- 批准号:
1422725 - 财政年份:2014
- 资助金额:
$ 54.42万 - 项目类别:
Standard Grant
相似海外基金
CAREER: FET: A Top-down Compilation Infrastructure for Optimization and Debugging in the Noisy Intermediate Scale Quantum (NISQ) era
职业:FET:用于噪声中级量子 (NISQ) 时代优化和调试的自上而下的编译基础设施
- 批准号:
2421059 - 财政年份:2024
- 资助金额:
$ 54.42万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Standard Grant
TYPDSEC: TYPe-based information Declassification and its SEcure Compilation
TYPDSEC:基于TYPe的信息解密及其安全编译
- 批准号:
EP/Y003535/1 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Research Grant
Hybrid compilation framework to accelerate quantum application development (CATALYST)
加速量子应用开发的混合编译框架(CATALYST)
- 批准号:
10071684 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Collaborative R&D
Compilation and Verification of Quantum Software in the Noisy and Approximate Regime
嘈杂近似体系中量子软件的编译与验证
- 批准号:
EP/Y004736/1 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Research Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313083 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Standard Grant
A comprehensive compilation of folklore culture founded on materials from Northern Russia: a practice.
以俄罗斯北部材料为基础的民俗文化综合汇编:一种实践。
- 批准号:
23K00427 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Compilation algorithm for many-body Hamiltonian tomography
多体哈密顿断层扫描的量子编译算法
- 批准号:
23K13025 - 财政年份:2023
- 资助金额:
$ 54.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists