Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays

合作研究:FET:中:动态可重构原子阵列的高效编译

基本信息

  • 批准号:
    2313083
  • 负责人:
  • 金额:
    $ 63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Quantum computing is considered one of the most promising alternatives to go beyond the Moore’s Law scaling and provide drastic acceleration for selected applications and further the information technology revolution. The groundbreaking research carried out over the past four decades indicates that large-scale quantum systems may be used for far-reaching applications ranging from simulations of complex quantum matter to general purpose quantum information processing. Several quantum hardware platforms have made substantial advances in the past decade. Neutral atoms trapped in arrays of optical tweezers have recently emerged as an exceptionally promising experimental platform for programmable quantum simulations and quantum computation. These systems are readily scaled to large numbers and demonstrated experimentally that the qubit coupling for entanglement can be reconfigured dynamically during the quantum computation process, thus, are named dynamically reconfigurable atom arrays (DRAAs). DRAA introduces a number of unique opportunities. In particular, it supports a cache-compute computation model, where temporary data can be “cached” in a specific atom array for later computation, mimicking the architecture of modern CPUs. Moreover, algorithms involving error-corrected logical qubits can be implemented very efficiently, with a number of controls that scales with a number of logical (rather than physical) qubits. However, to take full advantage of this unique architecture, novel methods for compilation need to be developed, as programming a DRAA involves not only qubit placement and gate scheduling, but also atom movement. In addition, error correction needs to be considered and optimized under the constraint of available resources.This project aims at developing a novel DRAA compiler that simultaneously considers the problems of qubit placement, gate scheduling, atom movement, and selected error correction under a common compilation framework. In particular, it addresses four interrelated problems, including (i) Scalable compilation for DRAA that can efficiently support mapping, scheduling, and atom movement for DRAAs with hundreds to tens of thousands of atoms; (ii) Efficient support of the cache-based DRAA architecture, which has a memory zone, an entanglement zone, and a readout zone, with data reuse and data movement optimization; (iii) Customized support for hardware-efficient error correction on DRAAs that takes full advantage of atom movement capability, transversal property, and DRAA-specific error-biasing; and (iv) Selective error correction under resource constraints, where error criticality is analyzed and identified. The algorithms and compilation flow will be tested experimentally on the DRAA quantum computer developed at Harvard University. The project is an interdisciplinary collaboration effort by a team of researchers from the University of California Los Angeles (UCLA) Computer Science Department and the Harvard Physics Department. The investigators plan to integrate the research with education to expose students to the exciting opportunities of quantum computing and train a new generation of students so that they have deep knowledge in both quantum computing device technologies and large-scale design automation and optimization. The research results from this project will be disseminated widely via publications and tutorials at various conferences. The team will further facilitate the technology transfer and community-wide participation using open-source releases of both the compilation system and the DRAA experimental data developed under this project. Finally, the investigators plan to broaden the participation in computing via high-school summer programs and partnerships with various diversity and outreach programs, such as the Center for Excellence in Engineering and Diversity at UCLA and CUAEngage at Harvard.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算被认为是超越摩尔定律缩放的最有前途的替代方案之一,并为选定的应用提供急剧的加速,并进一步推动信息技术革命。 过去四十年来进行的突破性研究表明,大规模量子系统可以用于从复杂量子物质的模拟到通用量子信息处理的广泛应用。在过去十年中,几个量子硬件平台取得了实质性进展。被囚禁在光镊阵列中的中性原子最近成为可编程量子模拟和量子计算的一个非常有前途的实验平台。这些系统很容易扩展到大的数量,并通过实验证明,在量子计算过程中,用于纠缠的量子比特耦合可以动态地重新配置,因此,被命名为动态可重构原子阵列(DRAAs)。DRAA带来了许多独特的机会。特别是,它支持缓存计算模型,其中临时数据可以“缓存”在特定的原子数组中以供以后计算,模仿现代CPU的架构。此外,涉及纠错逻辑量子位的算法可以非常有效地实现,其中许多控制与逻辑(而不是物理)量子位的数量成比例。然而,为了充分利用这种独特的架构,需要开发新的编译方法,因为对DRAA进行编程不仅涉及量子位的放置和门调度,还涉及原子的移动。此外,纠错需要考虑和优化的限制下可用的资源。本项目旨在开发一种新型的DRAA编译器,同时考虑量子位的位置,门调度,原子运动,并选择错误校正在一个共同的编译框架下的问题。特别地,它解决了四个相互关联的问题,包括(i)用于DRAA的可扩展编译,其可以有效地支持具有数百到数万个原子的DRAA的映射、调度和原子移动;(ii)有效地支持基于高速缓存的DRAA架构,其具有存储器区、纠缠区和读出区,具有数据重用和数据移动优化;(iii)对DRA上的硬件高效纠错的定制支持,其充分利用原子移动能力、横向属性和DRA特定的错误偏置;以及(iv)在资源约束下的选择性纠错,其中分析和识别错误关键性。算法和编译流程将在哈佛大学开发的DRAA量子计算机上进行实验测试。该项目是由来自加州洛杉矶大学(UCLA)计算机科学系和哈佛物理系的一组研究人员进行的跨学科合作。研究人员计划将研究与教育相结合,让学生接触到量子计算的激动人心的机会,并培养新一代学生,使他们在量子计算设备技术和大规模设计自动化和优化方面都有深入的知识。该项目的研究成果将通过出版物和各种会议上的辅导广泛传播。该小组将利用在该项目下开发的汇编系统和DRAA实验数据的开放源码版本,进一步促进技术转让和社区范围的参与。最后,研究人员计划通过高中暑期项目以及与各种多样性和外展项目的合作伙伴关系来扩大对计算的参与,例如加州大学洛杉矶分校的工程和多样性卓越中心和哈佛的CUAEngage。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Cong其他文献

Compilation for Dynamically Field-Programmable Qubit Arrays with Efficient and Provably Near-Optimal Scheduling
具有高效且可证明接近最优调度的动态现场可编程量子位阵列的编译
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Bochen Tan;Wan;Jason Cong
  • 通讯作者:
    Jason Cong
span style=font-family:; cambria,serif;font-size:12pt;=GRT: a Reconfigurable SDR Platform with High Performance and Usability/span
GRT:具有高性能和可用性的可重构 SDR 平台
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tao Wang;Guangyu Sun;Jiahua Chen;Jian Gong;Haoyang Wu;Xiaoguang Li;Songwu Lu;Jason Cong
  • 通讯作者:
    Jason Cong
Enhancing High-Level Synthesis with Automated Pragma Insertion and Code Transformation Framework
通过自动编译指示插入和代码转换框架增强高级综合
  • DOI:
    10.48550/arxiv.2405.03058
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stéphane Pouget;L. Pouchet;Jason Cong
  • 通讯作者:
    Jason Cong
RC-NVM: Dual-Addressing Non-Volatile Memory Architecture Supporting Both Row and Column Memory Accesses
RC-NVM:支持行和列存储器访问的双寻址非易失性存储器架构
  • DOI:
    10.1109/tc.2018.2868368
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Shuo Li;Nong Xiao;Peng Wang;Guangyu Sun;Xiaoyang Wang;Yiran Chen;Hai Li;Jason Cong;Tao Zhang
  • 通讯作者:
    Tao Zhang
Quantum State Preparation Using an Exact CNOT Synthesis Formulation
使用精确的 CNOT 合成公式制备量子态
  • DOI:
    10.48550/arxiv.2401.01009
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanyu Wang;Daniel Bochen Tan;Jason Cong;G. Micheli
  • 通讯作者:
    G. Micheli

Jason Cong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Cong', 18)}}的其他基金

SHF: Medium: Automating High Level Synthesis via Graph-Centric Deep Learning
SHF:中:通过以图为中心的深度学习实现高级综合自动化
  • 批准号:
    2211557
  • 财政年份:
    2022
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
RTML: Large: Acceleration to Graph-Based Machine Learning
RTML:大型:加速基于图的机器学习
  • 批准号:
    1937599
  • 财政年份:
    2019
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
CAPA: Collaborative Research: A Multi-Paradigm Programming Infrastructure for Heterogeneous Architectures
CAPA:协作研究:异构架构的多范式编程基础设施
  • 批准号:
    1723773
  • 财政年份:
    2017
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
Accelerator-Rich Architectures with Applications to Healthcare
富含加速器的架构及其在医疗保健领域的应用
  • 批准号:
    1436827
  • 财政年份:
    2014
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
NSF Workshop; Electronic Design Automation -- Past, Present, and Future
美国国家科学基金会研讨会;
  • 批准号:
    0930477
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Synthesis and Mapping for Application-Specific Processor Networks
特定应用处理器网络的综合和映射
  • 批准号:
    0903541
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Customizable Domain-Specific Computing
可定制的特定领域计算
  • 批准号:
    0926127
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
SGER: Platforms for Future Embedded Systems
SGER:未来嵌入式系统的平台
  • 批准号:
    0647442
  • 财政年份:
    2006
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
International Center on Design for Nanotechnologies
国际纳米技术设计中心
  • 批准号:
    0530261
  • 财政年份:
    2005
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
MSPA-MCS: Scalable Optimization Algorithms for VLSI Circuit Physical Design
MSPA-MCS:VLSI 电路物理设计的可扩展优化算法
  • 批准号:
    0528583
  • 财政年份:
    2005
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
  • 批准号:
    2307573
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
  • 批准号:
    2312755
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了