CAREER: Enhanced Analysis & Algorithms to Minimize the Spread of Misinformation in Social Networks

职业:增强分析

基本信息

  • 批准号:
    1943370
  • 负责人:
  • 金额:
    $ 48.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The project goal is to significantly reduce the destructive spread of misinformation on social media and other Web sources, and its potential threat to national security. To do so, the investigator will develop new machine learning algorithms to better detect authenticity and recommend content. The research integrates computer and social sciences to account for the complex real-world interactions among publisher, platform, content recommendation algorithms, bot users, human users, and their social connections. One way social networks engage users is by keeping them consuming personalized content. Malicious actors can easily penetrate these systems with misleading stories and consequent recommendations that prompt people to make decisions based on this misinformation. Younger generations are increasingly active on such platforms, making it critical to reduce the threat that the continuing spread of misinformation poses. Findings will result in a deeper understanding of how recommender systems behave in the presence of misleading stories, and will offer systems design strategies to insure that people receive accurate information to make decisions.There is currently no framework in place to quantify how much recommendations with misinformation in the loop influence social network users. This research will fill this gap. Project objectives are to: (1) develop graph-based models to measure the degree of story, sources, and user credibility as opposed to a typical binary assessment; (2) develop a new framework integrating user-centric information diffusion models to assess the impact of, and compute benchmarks for, current recommender systems in spreading misleading stories; (3) develop algorithms for content recommender systems that will minimize misinformation spread in social networks. An integrated education plan will engage Boise State University college students, who will use a service-learning approach to help Idaho high school students and teachers improve their ability to identify and respond to misinformation. Educational activities will also increase awareness of and interest in computer science occupations, and encourage minorities' retention and diversity.This project is jointly funded by Secure and Trustworthy Cyberspace (SaTC) program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是显著减少社交媒体和其他网络来源上错误信息的破坏性传播,以及对国家安全的潜在威胁。为此,研究人员将开发新的机器学习算法,以更好地检测真实性并推荐内容。该研究整合了计算机和社会科学,以解释出版商、平台、内容推荐算法、机器人用户、人类用户及其社交关系之间复杂的现实世界互动。社交网络吸引用户的一种方式是让他们消费个性化的内容。恶意行为者可以很容易地通过误导性的故事和随之而来的建议渗透到这些系统中,促使人们根据这些错误信息做出决定。年轻一代在这些平台上越来越活跃,因此必须减少错误信息持续传播造成的威胁。调查结果将导致更深入地了解如何推荐系统的行为存在误导性的故事,并将提供系统设计策略,以确保人们获得准确的信息,使decision.There目前还没有框架到位,以量化多少建议与错误信息的循环影响社交网络用户。这项研究将填补这一空白。项目目标是:(1)开发基于图的模型来衡量故事、来源和用户可信度的程度,而不是典型的二元评估;(2)开发一个新的框架,整合以用户为中心的信息传播模型,以评估当前推荐系统在传播误导性故事方面的影响,并计算其基准;(3)开发用于内容推荐系统的算法,其将最小化在社交网络中传播的错误信息。一项综合教育计划将吸引博伊西州立大学的大学生,他们将使用服务学习的方法来帮助爱达荷州高中学生和教师提高他们识别和应对错误信息的能力。教育活动还将提高对计算机科学职业的认识和兴趣,该项目由安全和值得信赖的网络空间(SaTC)计划和刺激竞争力研究的既定计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Service-Learning in Graduate Curriculum to Address Teenagers' Vulnerability to Web Misinformation
在研究生课程中利用服务学习来解决青少年对网络错误信息的脆弱性
How Do People Decide Political News Credibility?
人们如何决定政治新闻的可信度?
  • DOI:
    10.1109/asonam49781.2020.9381342
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Spezzano, Francesca;Winiecki, Don
  • 通讯作者:
    Winiecki, Don
Characterizing and predicting fake news spreaders in social networks
Are you influenced?: modeling the diffusion of fake news in social media
Textual Characteristics of News Title and Body to Detect Fake News: A Reproducibility Study
检测假新闻的新闻标题和正文的文本特征:再现性研究
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shrestha, Anu;Spezzano, Francesca
  • 通讯作者:
    Spezzano, Francesca
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesca Spezzano其他文献

Evaluating the impact of social media in detecting health-violating restaurants
评估社交媒体在检测违规餐厅方面的影响
Metric Logic Program Explanations for Complex Separator Functions
复杂分隔符功能的度量逻辑程序说明
  • DOI:
    10.1007/978-3-319-45856-4_14
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srijan Kumar;Edoardo Serra;Francesca Spezzano;V. S. Subrahmanian
  • 通讯作者:
    V. S. Subrahmanian
Understanding Teenagers’ Real and Fake News Sharing on Social Media
了解青少年在社交媒体上分享真假新闻
Predicting Friendship Strength for Privacy Preserving: A Case Study on Facebook
预测友谊强度以保护隐私:Facebook 案例研究
Sensational stories: The role of narrative characteristics in distinguishing real and fake news and predicting their spread
耸人听闻的故事:叙事特征在区分真假新闻并预测其传播方面的作用
  • DOI:
    10.1016/j.jbusres.2023.114289
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11.3
  • 作者:
    Anne Hamby;Hongmin Kim;Francesca Spezzano
  • 通讯作者:
    Francesca Spezzano

Francesca Spezzano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesca Spezzano', 18)}}的其他基金

REU Site: Data-driven Security
REU 站点:数据驱动的安全
  • 批准号:
    1950599
  • 财政年份:
    2020
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Standard Grant

相似海外基金

I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Standard Grant
Planning: Research in Generative Artificial Intelligence for Enhanced Analysis in the US Intelligence Community
规划:用于增强美国情报界分析的生成人工智能研究
  • 批准号:
    2332095
  • 财政年份:
    2023
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2246916
  • 财政年份:
    2023
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Standard Grant
Neurostimulation Enhanced Cognitive Restructuring for Transdiagnostic Emotional Dysregulation: A Component Analysis
神经刺激增强跨诊断情绪失调的认知重构:成分分析
  • 批准号:
    10583921
  • 财政年份:
    2023
  • 资助金额:
    $ 48.75万
  • 项目类别:
Future Heritage Now: Delivering Creative Research Through Enhanced Scientific Analysis
现在的未来遗产:通过增强的科学分析提供创造性研究
  • 批准号:
    AH/X009289/1
  • 财政年份:
    2023
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Research Grant
Quantum-Assisted Flood Modeling: Pioneering Large-Scale Analysis for Enhanced Risk Assessment
量子辅助洪水建模:开创性大规模分析以增强风险评估
  • 批准号:
    10083669
  • 财政年份:
    2023
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Small Business Research Initiative
Data Analysis of Cross-Coupling Reactions Using Enhanced Mathematical Methods to Decipher Complexity
使用增强数学方法分析交叉偶联反应的复杂性
  • 批准号:
    2885384
  • 财政年份:
    2023
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Studentship
Enhanced Flow, Pressure and Reliability Analysis of High-Flow safety couplings
高流量安全接头的增强流量、压力和可靠性分析
  • 批准号:
    10023355
  • 财政年份:
    2022
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Collaborative R&D
Functional analysis of botulinum toxin complex with enhanced oral toxicity
具有增强口服毒性的肉毒毒素复合物的功能分析
  • 批准号:
    22K07057
  • 财政年份:
    2022
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
'Raising the Pulse' (RtP): Systems analysis of the environmental, nutritional and health benefits of pulse-enhanced foods
“提高脉搏”(RtP):对脉搏强化食品的环境、营养和健康益处进行系统分析
  • 批准号:
    BB/W017946/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了