Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows

合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析

基本信息

  • 批准号:
    2246916
  • 负责人:
  • 金额:
    $ 9.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Forces resulting from blood flow interaction with walls of blood vessels have major impact on the initiation and progression of vascular diseases such as aneurysms, atherosclerosis, and vasospasms. Consequently, detailed and accurate blood flow analysis could be key to prognosis and treatment of such diseases. There are two popular modalities that are currently used to study 3D blood flow. The first is based on computational fluid dynamic (CFD) simulations. The second is through direct non-invasive imaging using techniques such as phase contrast magnetic resonance imaging (a.k.a 4D-Flow MRI). CFD requires accurate vascular geometry, model parameters, and estimates of boundary flow and initial conditions. These are time consuming and very difficult, if not impossible to estimate. Furthermore, the fidelity of CFD is limited by model assumptions. On the other hand, 4D-Flow MRI directly measures in-vivo volumetric blood flow velocities, but has low spatio-temporal resolution and the scans are contaminated by noise and image artifacts. The proposed project overcomes the limitations of both CFD and 4D-Flow MRI through a novel technique called deep data-assimilation. Here deep neural nets are used to model the blood flow. The training process imposes data fidelity with 4D-Flow MRI and simultaneously ensures that the physics of fluid flow and magnetic resonance are satisfied. The neural nets are then used to generate accurate dense spatio-temporal flow fields and flow dependent parameters such as wall shear stresses, vorticity etc. The ability to enhance 4D-Flow MRI will enable clinical researchers to investigate the impact of hemodynamics on the initiation and progression of vascular diseases. This will lead to novel physics-based flow image analysis tools for disease management that will significantly reduce cost and optimize treatment plans.The goal of the proposed project is to enable accurate and reliable hemodynamic analysis of cardio-vascular flows from time resolved three dimensional phase contrast magnetic resonance imaging (4D-Flow MRI). The proposed approach uses physics informed deep learning wherein time-varying flow (velocity and pressure) and field (magnetic moment) variables are modeled as deep neural nets. The training process fits 4D-Flow MRI data and also imposes blood flow physics (Navier-Stokes equation) and MRI acquisition physics (Bloch equations) as constraints. Creative design of loss functions in the learning process will achieve super-resolution, attenuate noise, and eliminate various image artifacts. Automatic differentiation will facilitate truncation error-free computation of velocity-dependent higher order hemodynamic parameters. Carefully designed in-vitro experiments will be used to validate and optimize the method. The proposed hybrid experimental and deep learning approach will create a new paradigm in cardiovascular flow research wherein the governing equations will be directly applied to low quality imaging data using deep learning to raise the reliability and accuracy to the level needed for scientific discovery. The project will provide opportunities to train graduate students in the latest deep-learning based techniques in engineering, engage undergraduate students in research through numerous programs at UW-Milwaukee and Northern Arizona University, and outreach to high school students belonging to marginalized communities through summer programs at UW-Milwaukee.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
血流与血管壁相互作用产生的力对血管疾病如动脉瘤、动脉粥样硬化和血管痉挛的发生和发展具有重要影响。因此,详细和准确的血流分析可能是这些疾病的预后和治疗的关键。目前有两种流行的模式用于研究3D血流。第一种是基于计算流体动力学(CFD)模拟。第二种是通过使用诸如相衬磁共振成像(a. k. a4 D-Flow MRI)的技术的直接非侵入性成像。CFD需要精确的血管几何形状、模型参数以及边界流和初始条件的估计。这些都是耗时和非常困难的,如果不是不可能估计。此外,CFD的保真度受到模型假设的限制。另一方面,4D-Flow MRI直接测量体内体积血流速度,但时空分辨率低,扫描受到噪声和图像伪影的污染。该项目通过一种称为深度数据同化的新技术克服了CFD和4D-Flow MRI的局限性。在这里,深度神经网络用于对血液流动进行建模。训练过程对4D-Flow MRI施加数据保真度,同时确保满足流体流动和磁共振的物理特性。然后,神经网络被用来生成准确的密集时空流场和流动相关的参数,如壁面剪切应力,涡度等的能力,以增强4D流磁共振成像将使临床研究人员调查的影响,血液动力学的血管疾病的开始和进展。这将导致新的基于物理学的流动图像分析工具的疾病管理,将显着降低成本和优化治疗plannes. Goal的拟议项目是使准确和可靠的血流动力学分析的心血管流动的时间分辨三维相位对比磁共振成像(4D-Flow MRI)。所提出的方法使用物理信息深度学习,其中时变流量(速度和压力)和场(磁矩)变量被建模为深度神经网络。训练过程拟合4D-Flow MRI数据,并且还施加血流物理学(Navier-Stokes方程)和MRI采集物理学(Bloch方程)作为约束。在学习过程中创造性地设计损失函数将实现超分辨率,衰减噪声,消除各种图像伪影。自动微分将有助于无截断误差的速度依赖性高阶血流动力学参数的计算。将使用精心设计的体外实验来验证和优化该方法。提出的混合实验和深度学习方法将在心血管血流研究中创建一个新的范式,其中控制方程将直接应用于使用深度学习的低质量成像数据,以将可靠性和准确性提高到科学发现所需的水平。该项目将提供机会对研究生进行最新的基于深度学习的工程技术培训,通过威斯康星大学密尔沃基分校和北方亚利桑那大学的众多项目吸引本科生参与研究,并通过UW的暑期项目与边缘化社区的高中生进行外联-密尔沃基。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation
用于解决奇异扰动边界层问题的理论指导物理信息神经网络
  • DOI:
    10.1016/j.jcp.2022.111768
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Arzani, Amirhossein;Cassel, Kevin W.;D'Souza, Roshan M.
  • 通讯作者:
    D'Souza, Roshan M.
ENHANCING CORRUPT CARDIOVASCULAR FLOW DATA WITH MACHINE LEARNING
通过机器学习增强损坏的心血管流量数据
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amirhossein Arzani其他文献

Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond
  • DOI:
    10.1007/s10439-022-02967-4
  • 发表时间:
    2022-04-20
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Amirhossein Arzani;Jian-Xun Wang;Michael S. Sacks;Shawn C. Shadden
  • 通讯作者:
    Shawn C. Shadden
Input parameterized physics informed neural networks for de noising, super-resolution, and imaging artifact mitigation in time resolved three dimensional phase-contrast magnetic resonance imaging
用于时间分辨三维相位对比磁共振成像中去噪、超分辨率和减轻成像伪影的输入参数化物理信息神经网络
  • DOI:
    10.1016/j.engappai.2025.110600
  • 发表时间:
    2025-06-15
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Amin Pashaei Kalajahi;Hunor Csala;Zayeed Bin Mamun;Sangeeta Yadav;Omid Amili;Amirhossein Arzani;Roshan M. D’Souza
  • 通讯作者:
    Roshan M. D’Souza
Transport and Mixing in Patient Specific Abdominal Aortic Aneurysms With Lagrangian Coherent Structures
具有拉格朗日相干结构的患者特异性腹主动脉瘤的运输和混合
  • DOI:
    10.1115/sbc2012-80475
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amirhossein Arzani;S. Shadden
  • 通讯作者:
    S. Shadden
Hemodynamics and Transport in Patient-specific Abdominal Aortic Aneurysms
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amirhossein Arzani
  • 通讯作者:
    Amirhossein Arzani
Flow topology and targeted drug delivery in cardiovascular disease.
心血管疾病中的流拓扑和靶向药物输送。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Sara S Meschi;Ali Farghadan;Amirhossein Arzani
  • 通讯作者:
    Amirhossein Arzani

Amirhossein Arzani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amirhossein Arzani', 18)}}的其他基金

EAGER: Understanding complex wind-driven wildfire propagation patterns with a dynamical systems approach
EAGER:通过动力系统方法了解复杂的风驱动野火传播模式
  • 批准号:
    2330212
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
  • 批准号:
    2247173
  • 财政年份:
    2022
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Continuing Grant
CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
  • 批准号:
    2143249
  • 财政年份:
    2022
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Continuing Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
  • 批准号:
    2246911
  • 财政年份:
    2022
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2103434
  • 财政年份:
    2021
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
  • 批准号:
    1947559
  • 财政年份:
    2020
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323983
  • 财政年份:
    2024
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Microbiome-mediated plant genetic resistance for enhanced agricultural sustainability
合作研究:URoL:ASC:微生物介导的植物遗传抗性以增强农业可持续性
  • 批准号:
    2319568
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334994
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334995
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Biogeochemical Flushing of Uranium in Groundwater
合作研究:地下水中铀的强化生物地球化学冲洗
  • 批准号:
    2229869
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
  • 批准号:
    2235160
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 9.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了