CAREER: Engineering genome topology to attenuate pathologic short tandem repeat instability

职业:工程基因组拓扑以减轻病理性短串联重复不稳定性

基本信息

  • 批准号:
    1943945
  • 负责人:
  • 金额:
    $ 53.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

DNA sequences store information, and access to this information is controlled at many levels. Scattered across DNA are random, repeated sequences referred to as short tandem repeats (STRs). STRs help regulate gene expression and can also expand and contract in length. Overexpansion of STR's can lead to a number of diseases, including ALS (Lou Gehrig’s disease), Alzheimer’s, and Huntington’s. This project will focus on what causes STR expansion that leads to disease. The proper application of statistics and computational tools are key to making progress in this effort. A training program will provide students with the opportunity to learn those techniques.Much is already known regarding how transcription factors and epigenetic marks work in the context of the linear genome to regulate neural synapses in the brain. Yet, severe limitations still exist in our ability to understand the mechanisms by which synapses are severely disrupted in neurological disorders such as fragile X syndrome (FXS), Huntington’s disease, and Alzheimer’s disease. Recently, the Cremins lab discovered that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating a genome folding pattern termed the topologically associating domain (TAD). The lab went on to discover that TAD boundaries are severely disrupted in FXS, thus revealing higher-order folding of the genetic sequence as a new dimension in understanding neurological disorders with synaptic defects. A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas hundreds of thousands of repeat tracts across the human genome are relatively stable. The overall objective of this project is to understand the mechanistic link between occupancy of the architectural protein CTCF and STR instability at TAD boundaries. Our central hypothesis is that TAD boundaries with ultra-high CTCF density represent hotspots in the human genome susceptible to instability. To test this hypothesis, we propose experimental and computational studies to (1) quantitatively measure the role for CTCF density and double strand breaks on STR instability and (2) engineer CTCF occupancy to induce a functional change in STR expansion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DNA序列存储信息,并且对这些信息的访问在许多层面上受到控制。分散在DNA上的是随机的重复序列,称为短串联重复序列(STR)。STR有助于调节基因表达,也可以在长度上扩展和收缩。STR的过度扩增可导致许多疾病,包括ALS(卢伽雷氏病)、阿尔茨海默氏症和亨廷顿氏病。该项目将重点关注是什么原因导致STR扩增导致疾病。适当应用统计和计算工具是在这方面取得进展的关键。一个培训项目将为学生提供学习这些技术的机会。关于转录因子和表观遗传标记如何在线性基因组的背景下调节大脑中的神经突触,我们已经知道了很多。然而,我们理解神经系统疾病如脆性X综合征(FXS)、亨廷顿病和阿尔茨海默病中突触严重破坏的机制的能力仍然存在严重的局限性。最近,Cremins实验室发现,几乎所有的疾病相关STR(daSTR)都位于划分基因组折叠模式的边界,称为拓扑关联结构域(topologically associated domain,简称STR)。该实验室继续发现,FXS中的神经元边界被严重破坏,从而揭示了遗传序列的高阶折叠作为理解具有突触缺陷的神经系统疾病的新维度。一个根本的未解决的问题是为什么一些STR容易发生病理性扩张,而人类基因组中成千上万的重复序列相对稳定。本项目的总体目标是了解结构蛋白CTCF的占用率和STR不稳定性之间的机械联系。我们的中心假设是,具有超高CTCF密度的边界代表了人类基因组中易受不稳定性影响的热点。为了验证这一假设,我们提出了实验和计算研究,以(1)定量测量CTCF密度和双链断裂对STR不稳定性的作用,(2)工程CTCF占用,以诱导STR expandation.This奖项的功能变化反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Phillips-Cremins其他文献

Jennifer Phillips-Cremins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Phillips-Cremins', 18)}}的其他基金

EFRI CEE: Engineering and imaging 3D genome folding dynamics to control transcriptional misregulation in Alzheimer's disease
EFRI CEE:对 3D 基因组折叠动力学进行工程设计和成像,以控制阿尔茨海默氏病的转录失调
  • 批准号:
    1933400
  • 财政年份:
    2019
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Standard Grant
Statistical Methods for High-Resolution Multiscale Analysis in DNA Interactions
DNA 相互作用高分辨率多尺度分析的统计方法
  • 批准号:
    1562665
  • 财政年份:
    2016
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Continuing Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Expanding and Leveraging the Natural Diversity of Type I CRISPR for Genome Engineering
职业:扩展和利用 I 型 CRISPR 的自然多样性进行基因组工程
  • 批准号:
    2338912
  • 财政年份:
    2024
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Continuing Grant
GREAT: Genome Refactoring and Engineering Approach to study non-coding genes driving Translation
伟大:研究驱动翻译的非编码基因的基因组重构和工程方法
  • 批准号:
    EP/Y024753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Research Grant
Collaborative Research: RESEARCH-PGR: Deciphering Host- and Environment-dependencies in the Legume-Rhizobia Symbiosis by Dual-Seq Transcriptomics and Directed Genome Engineering
合作研究:RESEARCH-PGR:通过双序列转录组学和定向基因组工程破译豆科植物-根瘤菌共生中的宿主和环境依赖性
  • 批准号:
    2243819
  • 财政年份:
    2023
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Deciphering Host- and Environment-dependencies in the Legume-Rhizobia Symbiosis by Dual-Seq Transcriptomics and Directed Genome Engineering
合作研究:RESEARCH-PGR:通过双序列转录组学和定向基因组工程破译豆科植物-根瘤菌共生中的宿主和环境依赖性
  • 批准号:
    2243821
  • 财政年份:
    2023
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Standard Grant
SBIR Phase I: Advanced multi-locus genome engineering to enable consolidated bioprocessing for the low-cost conversion of lignocellulose to hydrocarbon fuels and products
SBIR 第一阶段:先进的多位点基因组工程,实现整合生物加工,将木质纤维素低成本转化为碳氢化合物燃料和产品
  • 批准号:
    2112323
  • 财政年份:
    2023
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Standard Grant
Engineering Receptors to Control Platelet Activation and Therapeutic Release
工程受体来控制血小板激活和治疗释放
  • 批准号:
    10607886
  • 财政年份:
    2023
  • 资助金额:
    $ 53.71万
  • 项目类别:
Engineering locus-specific binders to DNA modifications
工程化位点特异性结合剂以进行 DNA 修饰
  • 批准号:
    10593668
  • 财政年份:
    2023
  • 资助金额:
    $ 53.71万
  • 项目类别:
Enhance myogenic transdifferentiation efficiency using engineering approaches
利用工程方法提高生肌转分化效率
  • 批准号:
    10647491
  • 财政年份:
    2023
  • 资助金额:
    $ 53.71万
  • 项目类别:
CRCNS US-German Research Proposal - The diversification of retinal ganglion cells: A combined transcriptomic, genome engineering and imaging approach
CRCNS 美国-德国研究提案 - 视网膜神经节细胞的多样化:转录组学、基因组工程和成像相结合的方法
  • 批准号:
    2309039
  • 财政年份:
    2023
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Deciphering Host- and Environment-dependencies in the Legume-Rhizobia Symbiosis by Dual-Seq Transcriptomics and Directed Genome Engineering
合作研究:RESEARCH-PGR:通过双序列转录组学和定向基因组工程破译豆科植物-根瘤菌共生中的宿主和环境依赖性
  • 批准号:
    2243818
  • 财政年份:
    2023
  • 资助金额:
    $ 53.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了