Statistical Methods for High-Resolution Multiscale Analysis in DNA Interactions

DNA 相互作用高分辨率多尺度分析的统计方法

基本信息

  • 批准号:
    1562665
  • 负责人:
  • 金额:
    $ 139.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

A fundamental mystery in genome biology is how the three billion base pairs of a mammalian DNA sequence (approximately 2 meters long) are folded, looped, and coiled to fit into a cell nucleus that is roughly 5-10 microns in diameter. Rapid progress has been made over the last few years in advancing our understanding of how the genome folds in three dimensions (3D), primarily driven by advances in sequencing technologies. The goal of this project is to develop mathematical models that will provide a deeper understanding of how 3D genome structure is connected to gene expression in healthy development, and how these folding patterns go awry during the onset and progression of disease. This project aims to shed new light into the organizing principles governing genome folding through chromatin conformation capture experiments. To date, no clear best practice computational methods exist for the comparison of genome organization across cell types or biological perturbations. The aim of this project is to develop mathematical models and computational methods to gain new insight into how the genetic material folds in different cellular states, and to sensitively detect how these folding patterns are dynamically altered by biological perturbations such as drugs, growth factors, and genome editing. This project focuses on developing methods to sensitively detect dynamic changes in two broad categories of 3D chromatin features: (1) sub-megabase topologically associating domains exhibiting a block structure, and (2) precise long-range interactions between two distant genomic loci, leading to looping out of the intervening genomic DNA. Both parametric and non-parametric normalization approaches for elucidating these features will be explored and benchmarked. Models for these features will be developed, leading to scan statistics for identifying them in normalized 3D contact maps. Methods for false discovery rate control for these scan statistics will be developed based on analysis of heterogeneous Poisson fields.
基因组生物学中的一个基本谜团是哺乳动物DNA序列(约2米长)的30亿个碱基对是如何折叠、成环和卷曲以适应直径约5-10微米的细胞核的。在过去的几年里,在推进我们对基因组如何在三维(3D)中折叠的理解方面取得了快速进展,主要是由测序技术的进步推动的。该项目的目标是开发数学模型,以更深入地了解3D基因组结构如何与健康发育中的基因表达相关联,以及这些折叠模式在疾病的发作和进展过程中如何出错。这个项目旨在通过染色质构象捕获实验揭示基因组折叠的组织原理。迄今为止,没有明确的最佳实践计算方法存在的比较基因组组织跨细胞类型或生物扰动。该项目的目的是开发数学模型和计算方法,以获得对遗传物质如何在不同细胞状态下折叠的新见解,并灵敏地检测这些折叠模式如何被药物,生长因子和基因组编辑等生物扰动动态改变。该项目的重点是开发方法,以灵敏地检测两大类3D染色质特征的动态变化:(1)亚巨链拓扑关联结构域显示出块结构,(2)两个遥远的基因组位点之间的精确的远程相互作用,导致插入基因组DNA的循环。参数和非参数规范化的方法来阐明这些功能将被探索和基准。这些功能的模型将被开发,导致扫描统计,以确定他们在规范化的3D接触地图。这些扫描统计的错误发现率控制的方法将开发基于异构泊松场的分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Phillips-Cremins其他文献

Jennifer Phillips-Cremins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Phillips-Cremins', 18)}}的其他基金

CAREER: Engineering genome topology to attenuate pathologic short tandem repeat instability
职业:工程基因组拓扑以减轻病理性短串联重复不稳定性
  • 批准号:
    1943945
  • 财政年份:
    2020
  • 资助金额:
    $ 139.6万
  • 项目类别:
    Continuing Grant
EFRI CEE: Engineering and imaging 3D genome folding dynamics to control transcriptional misregulation in Alzheimer's disease
EFRI CEE:对 3D 基因组折叠动力学进行工程设计和成像,以控制阿尔茨海默氏病的转录失调
  • 批准号:
    1933400
  • 财政年份:
    2019
  • 资助金额:
    $ 139.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Methods for Biomarkers Identification Using High-resolution Diffusion MRI
使用高分辨率扩散 MRI 识别生物标志物的统计方法
  • 批准号:
    10667994
  • 财政年份:
    2023
  • 资助金额:
    $ 139.6万
  • 项目类别:
Test and develop high resolution mapping and modelling methods to support inter-censal population estimates
测试和开发高分辨率绘图和建模方法以支持普查间人口估计
  • 批准号:
    2891457
  • 财政年份:
    2023
  • 资助金额:
    $ 139.6万
  • 项目类别:
    Studentship
Fast and Robust Deep Learning for Medical imaging: Segmentation and Registration methods invariant to contrast and resolution
快速、鲁棒的医学成像深度学习:对比度和分辨率不变的分割和配准方法
  • 批准号:
    10733935
  • 财政年份:
    2023
  • 资助金额:
    $ 139.6万
  • 项目类别:
High-throughput methods for measuring cortical synaptic connectivity at single-cell resolution
以单细胞分辨率测量皮质突触连接的高通量方法
  • 批准号:
    10473009
  • 财政年份:
    2022
  • 资助金额:
    $ 139.6万
  • 项目类别:
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
  • 批准号:
    10698166
  • 财政年份:
    2022
  • 资助金额:
    $ 139.6万
  • 项目类别:
CRII:III:Development of deep learning methods for high-resolution 3D genome structure spatial reconstruction
CRII:III:高分辨率3D基因组结构空间重建深度学习方法的开发
  • 批准号:
    2153205
  • 财政年份:
    2022
  • 资助金额:
    $ 139.6万
  • 项目类别:
    Standard Grant
Development of integrative methods for correlative studies among dynamics, nano-localization, and function using simultaneous multi-color single-molecule and super-resolution imaging
使用同时多色单分子和超分辨率成像开发动力学、纳米定位和功能之间相关研究的综合方法
  • 批准号:
    22H02581
  • 财政年份:
    2022
  • 资助金额:
    $ 139.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 139.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
  • 批准号:
    10515457
  • 财政年份:
    2022
  • 资助金额:
    $ 139.6万
  • 项目类别:
Development and implementation of high-resolution imaging techniques and post-processing methods for hyperpolarised magnetic resonance imaging
超极化磁共振成像高分辨率成像技术和后处理方法的开发和实施
  • 批准号:
    2744613
  • 财政年份:
    2022
  • 资助金额:
    $ 139.6万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了