CAREER: Toward sub-60-mV/decade steep transistors using Dirac-source carrier injection and high-mobility 2D monochalcogenides

职业生涯:使用狄拉克源载流子注入和高迁移率二维单硫属化物实现低于 60 mV/十年陡峭的晶体管

基本信息

  • 批准号:
    1944095
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Proposal TitleTwo-dimensional high-performance steep transistors using Dirac-source carrier injection and high-mobility monochalcogenidesNon-Technical AbstractNext-generation quantum technologies demand for novel nanoelectronic devices that can operate at faster switching speed and with less energy consumption. Currently, silicon-based metal-oxide-semiconductor field-effect transistors, driven by thermionic emission, require at least 60 mV of gate voltage to increase the current by one order of magnitude at room temperature. Steep slope transistors such as tunneling transistors and ferroelectric negative capacitance transistors are capable of switching faster than the limit of 60 mV/decade, but they suffer their own challenges and issues for practical applications. To address these challenges, the proposed research focuses on investigation of a novel steep-slope device concept, known as the Dirac-source transistor, which is composed of two-dimensional graphene and emerging high-mobility monochalcogenides. Specifically, (i) fundamental understanding of a graphene-based Dirac-source carrier injection mechanism, (ii) investigation of synthesis technology and electronic properties of the monochalcogenides as the channel materials, and (iii) demonstration of a steep-slope Dirac-source transistors. The proposed solution governed by quantum mechanics on the nanometer scale is foreseen as a promising technique for extending Moore’s Law well into the quantum era. This project proposes events and involves entities across the university and local communities through close integration of research, education, and outreach programs with the focus on quantum nanomaterials and nanoelectronics. The proposed fundamental and multidisciplinary project will not only represent the state-of-the-art technology in the 2D material research field, but also provide an excellent training initiative for educating both undergraduate and graduate students, and for outreaching to K-12, women, and underrepresented minority students in STEM disciplines to fulfill the nation’s workforce needs.Technical AbstractAs the miniaturization of complementary metal-oxide-semiconductor (CMOS) approaches its physical limitation, new technologies are critically needed to extend the performance of electronic systems in terms of power, speed, and density, etc. The proposed Dirac-source steep transistor is considered as a novel device concept, which is capable of working at a supply voltage less than 0.5 V and switching faster than the limit of 60 mV/decade. Such excellent performance is attributed to a synergetic combination of two-dimensional graphene and semiconducting monochalcogenides through the unique Dirac-source carrier injection mechanism in their van der Waals heterostructure. The research approach combines both theoretical simulation and experimental demonstration to pursue the final deliverables: (i) a fundamental understanding of the Dirac-source carrier injection mechanism; (ii) a high-resolution database and engineering principle of the emerging 2D semiconducting monochalcogenides; and (iii) a prototypical demonstration of the logic devices with steep subthreshold slope and low energy consumption. The intellectual significance of the proposed research includes providing innovative solution (Dirac-source carrier injection) to address the need of energy-efficient electronic devices, exploring the untapped potential of emerging two-dimensional semiconducting channel materials (monochalcogenides) based on their unique structure and properties, and representing a major breakthrough in quantum science and technology for extending Moore’s law well into the quantum era.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提案标题二维高性能陡晶体管使用Dirac源载流子注入和高迁移率monocalcoherizenidesNon-Technical AbstractionNext-generation量子技术的需求,新的纳米电子器件,可以在更快的开关速度和更少的能源消耗。目前,由电子发射驱动的硅基金属氧化物半导体场效应晶体管需要至少60 mV的栅极电压以在室温下将电流增加一个数量级。诸如隧穿晶体管和铁电负电容晶体管的陡斜率晶体管能够比60 mV/十倍的极限更快地切换,但是它们在实际应用中遭受它们自己的挑战和问题。为了应对这些挑战,拟议的研究重点是调查一种新的陡斜率器件概念,称为Dirac源极晶体管,它由二维石墨烯和新兴的高迁移率单硫族化物组成。具体而言,(i)基于石墨烯的Dirac源极载流子注入机制的基本理解,(ii)作为沟道材料的单硫族化合物的合成技术和电子性质的研究,以及(iii)陡斜率Dirac源极晶体管的演示。由纳米尺度上的量子力学支配的所提出的解决方案被预见为将摩尔定律很好地扩展到量子时代的有前途的技术。该项目提出了活动,并通过研究,教育和外展计划的紧密结合,涉及整个大学和当地社区的实体,重点是量子纳米材料和纳米电子学。拟议的基础和多学科项目不仅代表了2D材料研究领域的最先进技术,而且还为教育本科生和研究生以及K-12,妇女,以及在STEM学科中代表性不足的少数民族学生,以满足国家的劳动力需求。半导体(CMOS)接近其物理极限,迫切需要新的技术来扩展电子系统在功率、速度和密度等方面的性能。提出的Dirac源极陡峭晶体管被认为是一种新的器件概念,它能够在低于0.5 V的电源电压下工作,开关速度超过60 mV/decade的限制。这种优异的性能归因于二维石墨烯和半导体单硫族化合物通过其货车德瓦尔斯异质结构中独特的Dirac源载流子注入机制的协同组合。该研究方法结合了理论模拟和实验演示,以追求最终交付成果:(i)对Dirac源载流子注入机制的基本理解;(ii)新兴2D半导体单硫族化物的高分辨率数据库和工程原理;以及(iii)具有陡峭亚阈值斜率和低能耗的逻辑器件的原型演示。所提出的研究的智力意义包括提供创新的解决方案(Dirac源载流子注入),以满足节能电子器件的需求,探索新兴的二维半导体沟道材料的未开发潜力(单硫属化物)基于其独特的结构和性质,代表了量子科学和技术的重大突破,将摩尔定律扩展到量子时代。该奖项反映了NSF的法定使命,并被视为通过使用基金会的知识价值和更广泛的影响审查标准进行评估,

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution
  • DOI:
    10.1038/s41699-022-00300-0
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Sichen Wei;Yu Fu;Maomao Liu;Hong-Fei Yue;Sehwan Park;Young Hee Lee;Huamin Li;Fei Yao
  • 通讯作者:
    Sichen Wei;Yu Fu;Maomao Liu;Hong-Fei Yue;Sehwan Park;Young Hee Lee;Huamin Li;Fei Yao
Monolayer MoS2 Steep-slope Transistors with Record-high Sub-60-mV/decade Current Density Using Dirac-source Electron Injection
使用狄拉克源电子注入实现单层 MoS2 陡坡晶体管,具有低于 60mV/十年的创纪录高电流密度
Metal-Semiconductor Schottky Diodes with Record-High Rectification and Conductance Using Two-Dimensional Monolayer Decoration
  • DOI:
    10.1109/edtm53872.2022.9798125
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simran Shahi;Maomao Liu;H. N. Jaiswal;Anindita Chakravarty;Sichen Wei;Yu Fu;Asma Ahmed;Anthony Cabanillas;Fei Yao;Huamin Li
  • 通讯作者:
    Simran Shahi;Maomao Liu;H. N. Jaiswal;Anindita Chakravarty;Sichen Wei;Yu Fu;Asma Ahmed;Anthony Cabanillas;Fei Yao;Huamin Li
Machine-Learning Assisted Exploration: Toward the Next-Generation Catalyst for Hydrogen Evolution Reaction
机器学习辅助探索:迈向下一代析氢反应催化剂
  • DOI:
    10.1149/1945-7111/ac41f1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wei, Sichen;Baek, Soojung;Yue, Hongyan;Liu, Maomao;Yun, Seok Joon;Park, Sehwan;Lee, Young Hee;Zhao, Jiong;Li, Huamin;Reyes, Kristofer
  • 通讯作者:
    Reyes, Kristofer
Mechanism of In-Plane and Out-of-Plane Tribovoltaic Direct-Current Transport with a Metal/Oxide/Metal Dynamic Heterojunction
  • DOI:
    10.1021/acsami.1c22438
  • 发表时间:
    2022-01-06
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Benner, Matthew;Yang, Ruizhe;Liu, Jun
  • 通讯作者:
    Liu, Jun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huamin Li其他文献

Layer-by-layer assembly enables electrically conductive, hydrophobic and flame-retardant fabric composites for multifunctional sensing and fire warning
逐层组装可实现用于多功能传感和火灾预警的导电、疏水且阻燃的织物复合材料。
  • DOI:
    10.1016/j.compositesb.2025.112235
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    14.200
  • 作者:
    Lv Li;Qin Su;Wei Xiao;Jun Yan;Haidi Wu;Junjie Wang;Zhanqi Liu;Huamin Li;Huaiguo Xue;Ling Wang;Yongqian Shi;Longcheng Tang;Jiefeng Gao
  • 通讯作者:
    Jiefeng Gao
Development of predictive models for shelf-life of sweet cherry under different storage temperatures
不同贮藏温度下甜樱桃货架期预测模型的建立
  • DOI:
    10.1016/j.lwt.2025.117442
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Wenming Xing;Wenli Liu;Huamin Li;Xiangquan Zeng;Xinguang Fan;Shaohua Xing;Hansheng Gong
  • 通讯作者:
    Hansheng Gong
Predictive model for growth of emPseudomonas/em spp. on fresh duck breast as a function of temperature
鸭胸脯上的荧光假单胞菌生长的预测模型作为温度的函数
  • DOI:
    10.1016/j.psj.2023.102868
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Shaohua Xing;Kaixin Liu;Hansheng Gong;Huamin Li;Wenli Liu;Lu Liu
  • 通讯作者:
    Lu Liu
Effect of emLevilactobacillus brevis/em as a starter on the flavor quality of radish paocai
短乳杆菌作为发酵剂对萝卜泡菜风味品质的影响
  • DOI:
    10.1016/j.foodres.2023.112780
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Xiru Zhang;Yaxin Li;Yaran Zhao;Hui Guan;Chengwu Jin;Hansheng Gong;Xuemei Sun;Ping Wang;Huamin Li;Wenli Liu
  • 通讯作者:
    Wenli Liu
Predictive model for growth of Pseudomonas spp. on fresh duck breast as a function of temperature.
假单胞菌属的生长的预测模型。在新鲜的鸭胸上与温度的关系。
  • DOI:
    10.1016/j.psj.2023.102868
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Shaohua Xing;Kaixin Liu;Hansheng Gong;Huamin Li;Wenli Liu;Lu Liu
  • 通讯作者:
    Lu Liu

Huamin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
  • 批准号:
    2338069
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
  • 批准号:
    2343008
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了