CAREER: Form, Function, and Mechanics of Cell-Cell Junctions in the Heterogeneous Vascular Endothelium
职业:异质血管内皮细胞-细胞连接的形式、功能和力学
基本信息
- 批准号:1944121
- 负责人:
- 金额:$ 58.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) program will investigate endothelial cell-cell junctions - the lining of blood vessels and lymphatics. This work will first study the relationship between the form, function, and mechanics of these junctions. This work will then study how these features may be regulated to influence the integrity of the endothelial barrier. Endothelial cells form a critical semi-permeable barrier that controls the flux of ions, molecules, and cells into and out of vasculature. When an organism is healthy, the integrity of the endothelial cell barrier is tightly regulated. It can become dysregulated in conditions such as cardiovascular disease, cancer, or neurological diseases. The dysregulation can be in the form of spatial heterogeneity or a change in temporal dynamics. Regardless, this dysregulation poses a challenge for drug delivery. Cells exposed to the same environment can demonstrate phenotypic (form) differences. These cell-cell heterogeneities may have important functional significance. This work is important because a better understanding of the links between endothelial cell-cell junction form, function, and mechanics could lead to image-based functional predictions about endothelial barrier integrity in both models and in living vessels. These predictions could ultimately lead to improved drug delivery methods. This research project will employ a multidisciplinary approach that integrates aspects of engineering, biology, and physics using novel software. The research project will also develop outreach initiatives featuring a series of research training modules for undergraduate and graduate students, partnerships with rural high schools, new labs and problem sets that synergize research and education in an undergraduate biomechanics class, a podcast highlighting diverse experiences in STEM careers, and training and mentoring efforts. As an award to an early-career researcher, completion of the research and outreach work will launch the investigator's career in both research and outreach.The specific goal of the research is to discover how local alterations in endothelial cell-cell junction phenotype, and its dynamic rearrangements, contribute to local permeability of the endothelium to molecules and cells, and the degree to which this relationship is conserved across varying mechanical conditions, genetic alterations, junction types, and vascular beds from which the endothelial cells are derived. The research objectives are to (1) determine the role of endothelial cell-cell junction phenotype in controlling local permeability of the endothelium; (2) assess how endothelial cell-cell junction mechanics influence junction phenotype in response to external mechanical cues; and (3) determine how dynamic changes in endothelial cell-cell junction phenotype and mechanics contribute to local permeability of the endothelium. This work will establish the potential for a novel systems mechanobiology approach using microfabricated vascular models, molecular biology, advanced microscopy techniques, and custom software for quantitative analysis of the form, function, and mechanics of cell-cell junctions in the vascular endothelium. The following questions regarding endothelial cell mechanobiology will be answered: (i) can endothelial cell-cell junction phenotype and/or dynamics be used to quantitatively predict local permeability to molecules and/or cells; (ii) does intercellular junction phenotype quantitatively correlate with cell-cell or cell-matrix tension; and (iii) how do external mechanical cues alter intracellular signaling pathways to shift intercellular junction phenotypes and local barrier function? The project will allow the PI to advance knowledge in the field of mechanobiology, develop new model systems and quantitative analysis tools for broad use across bioengineering applications, and form the infrastructure for a transformative education, mentoring, and outreach program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个学院早期职业发展(CALEAR)课程将研究内皮细胞-细胞连接--血管和淋巴管的衬里。这项工作将首先研究这些连接的形式、功能和力学之间的关系。然后,这项工作将研究如何调节这些特征来影响内皮屏障的完整性。内皮细胞形成一个关键的半透屏障,控制离子、分子和细胞进出血管系统的流量。当生物体健康时,内皮细胞屏障的完整性受到严格的调控。在心血管疾病、癌症或神经疾病等情况下,它可能会变得失调。这种失调可以是空间异质性的形式,也可以是时间动态的变化。无论如何,这种监管失调对药物输送构成了挑战。暴露在相同环境中的细胞可以表现出表型(形式)的差异。这些细胞间的异质性可能具有重要的功能意义。这项工作很重要,因为更好地了解内皮细胞-细胞连接形式、功能和机制之间的联系可以导致在两个模型和活的血管中基于图像的关于内皮屏障完整性的功能预测。这些预测最终可能导致药物输送方法的改进。这项研究项目将采用一种多学科的方法,利用新的软件整合工程学、生物学和物理学的各个方面。该研究项目还将制定推广举措,包括面向本科生和研究生的一系列研究培训模块,与农村高中的合作伙伴关系,新的实验室和习题集,以协同本科生生物力学课程的研究和教育,播客突出STEM职业生涯的不同经验,以及培训和指导努力。作为对早期研究人员的奖励,这项研究和推广工作的完成将开启这位研究人员的研究和外部职业生涯。这项研究的具体目标是发现内皮细胞-细胞连接表型的局部变化及其动态重排如何有助于局部内皮对分子和细胞的渗透性,以及这种关系在不同的机械条件、遗传变化、连接类型和内皮细胞衍生的血管床中的保守程度。研究的目的是(1)确定内皮细胞-细胞连接表型在控制内皮细胞局部通透性中的作用;(2)评估内皮细胞-细胞连接机制如何响应外界机械信号影响连接表型;以及(3)确定内皮细胞-细胞连接表型和力学的动态变化如何促进内皮的局部通透性。这项工作将建立一种新的系统机械生物学方法的可能性,使用微型制造的血管模型、分子生物学、先进的显微技术和定制软件来定量分析血管内皮细胞-细胞连接的形式、功能和机制。关于内皮细胞机械生物学的下列问题将得到解答:(I)内皮细胞-细胞连接表型和/或动力学是否可以用于定量预测局部对分子和/或细胞的通透性;(Ii)细胞间连接表型是否与细胞-细胞或细胞-基质张力定量相关;以及(Iii)外部机械信号如何改变细胞内信号通路以改变细胞间连接表型和局部屏障功能?该项目将允许PI推进机械生物学领域的知识,开发新的模型系统和定量分析工具,供生物工程应用程序广泛使用,并形成变革性教育、指导和推广计划的基础设施。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Stroka其他文献
Kimberly Stroka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly Stroka', 18)}}的其他基金
I-Corps: In-vitro tool that provides multiparametric information in real-time to determine the efficacy and toxicity of a new drug
I-Corps:实时提供多参数信息以确定新药功效和毒性的体外工具
- 批准号:
2130085 - 财政年份:2021
- 资助金额:
$ 58.88万 - 项目类别:
Standard Grant
相似国自然基金
基于Free-form机床的弧齿锥齿轮定摆角全工序法主动设计制造理论
- 批准号:51805405
- 批准年份:2018
- 资助金额:29.0 万元
- 项目类别:青年科学基金项目
基于“免形状(Form-free)”测量原理的复杂形状测量仪研制
- 批准号:50627501
- 批准年份:2006
- 资助金额:100.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Linking Form and Function in Fire Ant Architecture
职业:火蚁建筑中形式与功能的联系
- 批准号:
2340500 - 财政年份:2024
- 资助金额:
$ 58.88万 - 项目类别:
Continuing Grant
Conference: SICB 2024: Computational and Physical Models in Research and Teaching to Explore Form-Function Relationships
会议:SICB 2024:研究和教学中的计算和物理模型探索形式-功能关系
- 批准号:
2326876 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Standard Grant
22 UKRI-SBE: Primate natal coats: Form and function
22 UKRI-SBE:灵长类动物出生皮毛:形式和功能
- 批准号:
BB/X011097/1 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2022: Disentangling the diversity of synovial joint form and function
2022 财年 NSF 生物学博士后奖学金:解开滑膜关节形式和功能的多样性
- 批准号:
2209144 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Fellowship Award
Conference: 2023 Developmental Biology GRC and GRS Developmental Origin of Form and Function
会议:2023发育生物学GRC和GRS发育形式和功能的起源
- 批准号:
2316334 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Standard Grant
Exploring metabolic governance of immune cell form and function
探索免疫细胞形式和功能的代谢调控
- 批准号:
10725429 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
CAREER: Effects of pregnancy and lactation on muscle-tendon form and function in the rat, Rattus norvegicus
职业:妊娠和哺乳期对褐家鼠肌腱形态和功能的影响
- 批准号:
2239863 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Continuing Grant
Probing form and function of memory representations in the hippocampus of memory expert birds
探索记忆专家鸟类海马体记忆表征的形式和功能
- 批准号:
10641392 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Function follows (iso)form: Exploring functional diversity of isoform expression in single cells
功能遵循(异构体)形式:探索单细胞中异构体表达的功能多样性
- 批准号:
2869575 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Form and Function of a water specialist orb weaver: From Molecules to Biomechanics
NSF 生物学博士后奖学金:水专家球体编织者的形式和功能:从分子到生物力学
- 批准号:
2208904 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Fellowship Award