CAREER: Deconstructing Proton Transport through Atomically Thin Membranes

职业:解构通过原子薄膜的质子传输

基本信息

  • 批准号:
    1944134
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Membrane technologies have the potential to play a transformative role in addressing energy scarcity, which impacts the lives of millions of people. Atomically-thin two-dimensional (2D) materials represent a new kind of membrane material. 2D materials allow subatomic particles (e.g., protons) to selectively pass through the membrane while blocking even small gas atoms such as helium. The ability to separate protons from other atoms and molecules will enable disruptive innovations in energy generation and conversion, chemical processing and separations, electronics, and environmental protection. The project aims to develop fundamental understanding of proton transport through 2D materials. These scientific insights will be leveraged to develop novel catalytic and separation processes that serve to advance the U.S. economy and national security. A comprehensive education and outreach plan will complement and aid research efforts by a) reinforcing positive public perception towards science, engineering and mathematics and b) training the next-generation of scientists.Atomically-thin 2D materials such as graphene and hexagonal boron nitride offer fundamentally new opportunities to probe and control mass-transport. Pristine monolayer graphene and hexagonal boron nitride are impermeable to helium atoms but allow for proton transport. Selective proton transport through 2D materials offers transformative opportunities for fuel cells, isotope separations, hydrogen purification, photo-detectors, and artificial photosynthesis. However, a comprehensive understanding of proton transport mechanisms through 2D materials remains elusive. The overall objective of project is to develop fundamental understanding of the mechanisms governing proton transport through 2D materials. State-of-the-art advances in in-situ metrology will be used to study proton permeation through 2D materials. These fundamental insights on proton transport will be used to develop novel catalytic and separation processes that are of interest to the U.S. economy and national security. The research is integrated with a comprehensive education and outreach plan that focuses on i) providing under-represented and under-served groups with research internships for undergraduate and high-school students and engaging with their high-school teachers; ii) collaboration with professionals to develop content for outreach and dissemination of research findings via social media platforms; and iii) community engagement with hands-on science experiments via outreach activities at Vanderbilt University and the Nashville area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
膜技术有潜力在解决影响数百万人生活的能源短缺问题上发挥变革性作用。原子薄二维材料是一种新型的膜材料。二维材料允许亚原子粒子(如质子)选择性地穿过膜,同时阻止小的气体原子,如氦。将质子与其他原子和分子分离的能力将使能源产生和转化、化学加工和分离、电子和环境保护等领域的颠覆性创新成为可能。该项目旨在通过二维材料发展对质子输运的基本理解。这些科学见解将被用于开发新的催化和分离工艺,以促进美国经济和国家安全。一项全面的教育和推广计划将通过A)加强公众对科学、工程和数学的积极看法和b)培训下一代科学家来补充和帮助研究工作。原子薄的二维材料,如石墨烯和六方氮化硼,为探测和控制质量传输提供了全新的机会。原始单层石墨烯和六方氮化硼不渗透氦原子,但允许质子传输。通过二维材料的选择性质子传输为燃料电池、同位素分离、氢净化、光电探测器和人工光合作用提供了变革的机会。然而,对二维材料中质子输运机制的全面理解仍然是难以捉摸的。该项目的总体目标是发展对二维材料中质子输运机制的基本理解。最先进的原位计量技术将用于研究质子通过二维材料的渗透。这些关于质子输运的基本见解将用于开发对美国经济和国家安全感兴趣的新型催化和分离工艺。该研究与一项全面的教育和推广计划相结合,该计划侧重于i)为本科生和高中生提供代表性不足和服务不足的群体的研究实习机会,并与他们的高中教师接触;Ii)与专业人士合作,通过社交媒体平台开发推广和传播研究成果的内容;iii)通过范德比尔特大学和纳什维尔地区的推广活动,参与社区实践科学实验。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Facile Size-Selective Defect Sealing in Large-Area Atomically Thin Graphene Membranes for Sub-Nanometer Scale Separations
  • DOI:
    10.1021/acs.nanolett.0c01934
  • 发表时间:
    2020-08-12
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Cheng, Peifu;Kelly, Mattigan M.;Kidambi, Piran R.
  • 通讯作者:
    Kidambi, Piran R.
An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery
  • DOI:
    10.1021/acs.iecr.1c00543
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Tin Le;Xi Chen;Hang Dong;W. Tarpeh;Adelaida Perea-Cachero;J. Coronas;Stephen M. Martin;Munirah M
  • 通讯作者:
    Tin Le;Xi Chen;Hang Dong;W. Tarpeh;Adelaida Perea-Cachero;J. Coronas;Stephen M. Martin;Munirah M
Deconstructing proton transport through atomically thin monolayer CVD graphene membranes
  • DOI:
    10.1039/d2ta01737g
  • 发表时间:
    2022-04-20
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Chaturvedi, Pavan;Moehring, Nicole K.;Kidambi, Piran R.
  • 通讯作者:
    Kidambi, Piran R.
Nanoporous Atomically Thin Graphene Filters for Nanoscale Aerosols
  • DOI:
    10.1021/acsami.2c10827
  • 发表时间:
    2022-08-29
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Cheng, Peifu;Espano, Jeremy;Kidambi, Piran R.
  • 通讯作者:
    Kidambi, Piran R.
Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations via facile isopropanol-assisted hot lamination
  • DOI:
    10.1039/d0nr07384a
  • 发表时间:
    2021-02-07
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Cheng, Peifu;Moehring, Nicole K.;Kidambi, Piran R.
  • 通讯作者:
    Kidambi, Piran R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Piran Kidambi其他文献

Piran Kidambi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
  • 批准号:
    NE/Z00022X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Deconstructing the brain circuits of reward-seeking
解构寻求奖励的大脑回路
  • 批准号:
    DE230100401
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Deconstructing the Checkpoints of Necroptosis
解构坏死性凋亡的检查点
  • 批准号:
    BB/X007383/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
  • 批准号:
    10656870
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing brainstem circuits for visceral senses
解构内脏感觉的脑干回路
  • 批准号:
    10591627
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing the diet-induced remodeling of adipose tissue
解构饮食诱导的脂肪组织重塑
  • 批准号:
    10567053
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing human body plan development with stem cells
用干细胞解构人体计划制定
  • 批准号:
    10644147
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing epileptic circuits in a mouse model of SLC6A1 syndrome
解构 SLC6A1 综合征小鼠模型中的癫痫回路
  • 批准号:
    10508480
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing the fibrotic microenvironment in Crohn's disease to promote tissue healing
解构克罗恩病的纤维化微环境,促进组织愈合
  • 批准号:
    MR/X008789/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Deconstructing and Rewiring RNA-RBP regulatory networks
解构和重新连接 RNA-RBP 调控网络
  • 批准号:
    EP/X029972/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了