CAREER: Reinforcement-Learning Assist-As-Needed Control For Robot-Assisted Gait Training
职业:机器人辅助步态训练的强化学习辅助按需控制
基本信息
- 批准号:1944203
- 负责人:
- 金额:$ 59.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will develop adaptive, assist-as-needed controllers for a powered ankle brace (orthosis). Such systems may promote the learning of desired gait patterns during physical rehabilitation. Reinforcement learning will be used to shape person-specific control policies that balance movement error and user effort. The approach accounts for each user’s ability to learn and their existing patterns of inter-limb coordination. The control methods will be tested by people walking on a treadmill at constant speed, and over-ground at self-selected speeds. Research participants will include healthy people and a small group of stroke survivors with gait deficits. This project will promote the progress of science and advance the national health by developing a new intelligent ankle-foot orthosis controller. This new controller promises to improve gait retraining outcomes in stroke survivors. The project includes a plan to advance engineering education. It will also spread knowledge of wearable robots at a STEM camp offered to underrepresented middle school children.This project will develop novel assist-as-needed control methods for powered ankle orthoses. There are two main research objectives in this project. The first will establish new reinforcement learning (RL-based) control strategies capable of self-adapting the control policy of a robotic orthosis to optimally balance the tradeoff between movement error and user effort in order to promote human learning of target gait trajectories. The performance of four different RL-based controllers will be compared to that of the most common form of adaptive assist-as-needed controller during treadmill walking by neurologically intact individuals and by a small cohort of stroke survivors. The second objective will extend these novel control strategies to situations wherein the desired target motion is unknown to the controller and must be computed on-line. This step is necessary in order to encourage desired patterns of interlimb coordination during over-ground walking, where terrain can be uneven and obstacles are to be avoided. Both objectives will be pursued by investigating model-free on-line RL control methods for optimal policy search, using adaptive frequency oscillators coupled with kernel-based nonlinear filters for on-line estimation of desired, time-varying gait trajectories. The research promises to advance a fundamental understanding of the bidirectional adaptations that can arise when adaptive human and machine intelligences interact through physical channels, here in the context of gait rehabilitation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展(Career)资助将为动力踝关节支架(矫形器)开发自适应的,根据需要的辅助控制器。这样的系统可以促进身体康复过程中所需步态模式的学习。强化学习将用于制定个人特定的控制策略,以平衡运动误差和用户努力。该方法考虑了每个用户的学习能力和他们现有的肢体间协调模式。这些控制方法将通过人们在跑步机上以恒定速度行走和在地面上以自行选择的速度行走来测试。研究参与者将包括健康的人和一小群有步态缺陷的中风幸存者。本项目开发一种新型智能踝足矫形器控制器,将促进科学进步,促进国民健康。这种新的控制器有望改善中风幸存者的步态再训练效果。该项目包括一项推进工程教育的计划。该公司还将在一个面向代表性不足的中学生的STEM夏令营中传播可穿戴机器人的知识。该项目将为动力踝关节矫形器开发新的按需辅助控制方法。这个项目有两个主要的研究目标。首先将建立新的基于强化学习(rl)的控制策略,该策略能够自适应机器人矫形器的控制策略,以最佳地平衡运动误差和用户努力之间的权衡,以促进人类对目标步态轨迹的学习。四种不同的基于rl的控制器的性能将与最常见的自适应辅助控制器在跑步机上行走时的性能进行比较,这些控制器由神经系统完好的个体和一小群中风幸存者组成。第二个目标是将这些新的控制策略扩展到控制器未知目标运动且必须在线计算的情况。这一步是必要的,以便在地面上行走时促进所需的四肢间协调模式,因为地面上的地形可能不平坦,需要避开障碍物。这两个目标将通过研究无模型在线强化学习控制方法来实现最优策略搜索,使用自适应频率振荡器和基于核的非线性滤波器来在线估计期望的时变步态轨迹。这项研究有望推进对双向适应的基本理解,当适应性人类和机器智能通过物理通道相互作用时,就会出现双向适应,这里是在步态康复的背景下。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CyberCoach: a Wearable Biofeedback System for Runners
CyberCoach:跑步者可穿戴生物反馈系统
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gibson, Matthew R.;Boergers, Richard J.;Zanotto, Damiano
- 通讯作者:Zanotto, Damiano
Shaping Individualized Impedance Landscapes for Gait Training via Reinforcement Learning
- DOI:10.1109/tmrb.2021.3137971
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Yufeng Zhang;Shuai Li;Karen J. Nolan;D. Zanotto
- 通讯作者:Yufeng Zhang;Shuai Li;Karen J. Nolan;D. Zanotto
Reinforcement Learning Assist-as-needed Control for Robot Assisted Gait Training
机器人辅助步态训练的强化学习按需辅助控制
- DOI:10.1109/biorob49111.2020.9224392
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Zhang, Yufeng;Li, Shuai;Nolan, Karen J.;Zanotto, Damiano
- 通讯作者:Zanotto, Damiano
Efficient Digital Modeling and Fabrication Workflow for Individualized Ankle Exoskeletons
个性化踝外骨骼的高效数字建模和制造工作流程
- DOI:10.1115/imece2021-70603
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gebre, Biruk A.;Nogueira, Rodrigo;Patidar, Shubham;Belle-Isle, Robert;Nolan, Karen J.;Pochiraju, Kishore;Zanotto, Damiano
- 通讯作者:Zanotto, Damiano
Reinforcement Learning-Based Adaptive Biofeedback Engine for Overground Walking Speed Training
- DOI:10.1109/lra.2022.3187616
- 发表时间:2022-07-01
- 期刊:
- 影响因子:5.2
- 作者:Zhang, Huanghe;Li, Shuai;Zanotto, Damiano
- 通讯作者:Zanotto, Damiano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damiano Zanotto其他文献
Damiano Zanotto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damiano Zanotto', 18)}}的其他基金
I-Corps: Artificial Intelligence-Enabled Shoe Insoles to Assess Walking Function in Real Life Environments
I-Corps:人工智能鞋垫可评估现实生活环境中的步行功能
- 批准号:
2322980 - 财政年份:2023
- 资助金额:
$ 59.75万 - 项目类别:
Standard Grant
NSF/FDA SIR: Towards the Establishment of a Validation Framework for Wearable Motion Analysis Systems: Development and Evaluation of an Open-Design Sync Platform
NSF/FDA SIR:建立可穿戴运动分析系统的验证框架:开放式设计同步平台的开发和评估
- 批准号:
2229538 - 财政年份:2022
- 资助金额:
$ 59.75万 - 项目类别:
Standard Grant
相似国自然基金
海桑属杂种区强化(Reinforcement)的检验与遗传基础研究
- 批准号:30800060
- 批准年份:2008
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Stochasticity and Resilience in Reinforcement Learning: From Single to Multiple Agents
职业:强化学习中的随机性和弹性:从单个智能体到多个智能体
- 批准号:
2339794 - 财政年份:2024
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: Towards Real-world Reinforcement Learning
职业:走向现实世界的强化学习
- 批准号:
2339395 - 财政年份:2024
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
- 批准号:
2340651 - 财政年份:2024
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: Foundations of Reinforcement Learning under Partial Observability
职业:部分可观察性下强化学习的基础
- 批准号:
2239297 - 财政年份:2023
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
- 批准号:
2349670 - 财政年份:2023
- 资助金额:
$ 59.75万 - 项目类别:
Continuing Grant