I-Corps: Artificial Intelligence-Enabled Shoe Insoles to Assess Walking Function in Real Life Environments

I-Corps:人工智能鞋垫可评估现实生活环境中的步行功能

基本信息

  • 批准号:
    2322980
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of sensitive, quantitative assessments that focus on ambulatory function in real-life settings to evaluate safety and effectiveness of new treatments in clinical trials and post-marketing surveillance in individuals with neurological conditions, such as neuromuscular disorders, Parkinson’s disease, Huntington disease, and Multiple Sclerosis. Walking is the most frequent activity of daily living and a key contributor to functional independence. New pharmacological treatments are changing the therapeutic landscape for several neurological conditions, altering their natural history, with encouraging results in ambulatory function. Walking-related digital mobility outcomes have the potential to objectively capture daily performance to supplement clinical assessments and patient-reported outcomes, thereby providing a more comprehensive picture of a patient’s condition. Interest in the use of wearables in clinical research to assess the efficacy of new interventions is on the rise. It is estimated that by 2025 nearly 70% of all clinical trials will involve wearables, while the average pharma company can save $100 million/year in trial development spending by adopting more objective, sensitive, and granular digital mobility outcomes. Yet, most devices for real-life gait monitoring are limited to volume digital mobility outcomes, which are easy to capture but lack stride-by-stride granularity. This innovation could enable the collection of accurate volume and stride-by-stride gait metrics longitudinally, in patients’ living environments, to help understand how disease trajectories are affected by new treatments. By capturing subtle but clinically meaningful functional changes over shorter time periods, the innovation could reduce the cost of clinical trials and bring effective treatments to patients faster and more affordably.This I-Corps project is based on the development of abstraction models that synergistically combine conventional signal processing methods for wearable gait monitoring systems with the vast expressive capability of machine learning regression and the superior personalization properties of transductive inference. Instead of replacing conventional methods, this innovation's machine learning models correct their outputs using an optimized set of input features, thereby generating accurate stride-by-stride spatiotemporal and kinetic digital mobility outcomes without the computational burden that plagues end-to-end machine learning models and hinders their implementation in embedded systems. By leveraging the strengths of transductive inference, the innovation's models provide unprecedented accuracy over extended-time measurements without the need for subject-specific labelled data. This novel approach provides algorithmic support for next-generation wearable technology to fill the accuracy gap between gold-standard laboratory equipment and emerging wearable gait monitoring devices, which hampers the widespread use of these systems in clinical research. By widening the range of applicability of wearable gait monitoring devices, the innovation will promote the understanding of real-life ambulatory function and its trajectories over time in healthy and clinical populations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目更广泛的影响/商业潜力是开发敏感的定量评估,重点关注现实生活环境中的行走功能,以评价临床试验和上市后监测中神经系统疾病(如神经肌肉疾病、帕金森病、亨廷顿病和多发性硬化症)患者新治疗的安全性和有效性。步行是日常生活中最常见的活动,也是功能独立的关键因素。新的药物治疗正在改变几种神经系统疾病的治疗前景,改变它们的自然病程,在行走功能方面取得了令人鼓舞的结果。步行相关的数字移动性结果有可能客观地捕获日常表现,以补充临床评估和患者报告的结果,从而提供更全面的患者状况。在临床研究中使用可穿戴设备来评估新干预措施的有效性的兴趣正在上升。据估计,到2025年,近70%的临床试验将涉及可穿戴设备,而制药公司通过采用更客观、更敏感和更精细的数字移动结果,平均每年可以节省1亿美元的试验开发支出。然而,大多数用于现实生活步态监测的设备仅限于体积数字移动性结果,其易于捕获但缺乏逐步粒度。这项创新可以在患者的生活环境中纵向收集准确的体积和步幅步态指标,以帮助了解疾病轨迹如何受到新治疗的影响。通过在较短的时间内捕获细微但有临床意义的功能变化,这项创新可以降低临床试验的成本,为患者带来更快、更实惠的有效治疗。Corps项目基于抽象模型的开发,该抽象模型将用于可穿戴步态监测系统的联合收割机传统信号处理方法与机器学习回归的巨大表达能力和上级转换推理的个性化属性。这项创新的机器学习模型没有取代传统方法,而是使用一组优化的输入特征来校正它们的输出,从而生成准确的逐步时空和动态数字移动结果,而没有困扰端到端机器学习模型并阻碍其在嵌入式系统中实现的计算负担。通过利用转导推理的优势,创新的模型在延长时间的测量中提供了前所未有的准确性,而不需要特定于受试者的标记数据。这种新方法为下一代可穿戴技术提供了算法支持,以填补黄金标准实验室设备和新兴可穿戴步态监测设备之间的准确性差距,这阻碍了这些系统在临床研究中的广泛使用。通过扩大可穿戴步态监测设备的适用范围,该创新将促进对健康和临床人群的实际行走功能及其随时间变化的轨迹的理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Damiano Zanotto其他文献

Damiano Zanotto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Damiano Zanotto', 18)}}的其他基金

NSF/FDA SIR: Towards the Establishment of a Validation Framework for Wearable Motion Analysis Systems: Development and Evaluation of an Open-Design Sync Platform
NSF/FDA SIR:建立可穿戴运动分析系统的验证框架:开放式设计同步平台的开发和评估
  • 批准号:
    2229538
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Reinforcement-Learning Assist-As-Needed Control For Robot-Assisted Gait Training
职业:机器人辅助步态训练的强化学习辅助按需控制
  • 批准号:
    1944203
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
  • 批准号:
    2418277
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Artificial Intelligence-Empowered Flood Risk Analytics
I-Corps:人工智能赋能的洪水风险分析
  • 批准号:
    2403646
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of an Artificial Intelligence (AI) approach to quantify and diagnose spinal cord diseases
I-Corps:人工智能 (AI) 方法量化和诊断脊髓疾病的转化潜力
  • 批准号:
    2416075
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Contextualization of Explainable Artificial Intelligence (AI) for Better Health
I-Corps:可解释人工智能 (AI) 的情境化以改善健康
  • 批准号:
    2331366
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Privacy-Responsive Artificial Intelligence-Based Solution for Smart Video Surveillance
I-Corps:基于隐私敏感的人工智能的智能视频监控解决方案
  • 批准号:
    2323757
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Audio Artificial Intelligence Data Platform to Diagnose Respiratory Disease
I-Corps:诊断呼吸系统疾病的音频人工智能数据平台
  • 批准号:
    2345293
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Artificial Intelligence and Haptic-Enabled Robotic Assistant for Surgeons
I-Corps:外科医生的人工智能和触觉机器人助手
  • 批准号:
    2330934
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了