CAREER: Spin-Magnon based Hybrid Quantum Devices
职业:基于自旋磁振子的混合量子器件
基本信息
- 批准号:1944635
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum systems show fascinating counterintuitive properties of superposition, i.e. the ability to be simultaneously in multiple states, and entanglement, i.e. the ability to develop long-distance many-body correlations. These properties present opportunities to build quantum technology, such as sensing, communication and information processing, with capabilities not achievable in the classical domain. In recent years motivated by this promise, tremendous progress has been achieved to engineer and control a variety of individual quantum systems. Among these, spin defects in insulating materials, i.e. microscopic spin quantum bits (qubits) are particularly promising. Spin interacts with the environment through their magnetic dipole moments: a fact utilized for quantum sensing of magnetic fields with unprecedented spatial resolution and sensitivity. On the other hand, the environment in typical materials hosting spin qubits produces weak magnetic fields, consequently the quantum states encoded in the spin qubits survive for long times, a fact that makes spin qubits attractive candidates for quantum memory and information processing. The next frontier aims at scaling the functionality of spin-based quantum hardware, which includes developing the ability of spin qubits to:(i) sense signals beyond magnetic fields for developing novel quantum sensors, and (ii) controllably interact beyond few proximally-placed spin qubits while retaining individual addressability, for quantum information processing. This has however proved challenging due to the lack of a mediator which can controllably and strongly couple to spin qubits as well as to a wide range of external signals. In this project, the principle investigator will exploit magnons (i.e. the collective excitations in magnets), as a fundamentally novel mediator to address this challenge. In tight integration with research, the principal investigator will also develop a quantum engineering course for training undergraduate, graduate and industry professionals for enhancing the United States quantum-smart workforce. The proposed research aims at unraveling novel magnon spin-qubit hybrid devices by integrating theory with proof-of-principle experiments. In particular, the principal investigator will pursue the following device types. (a) Sensing-type devices- the central aim of these devices will be to enhance sensing capability of spin qubits for signals, such as, electric fields, temperature. This will be achieved by using magnons as transducers of external signals to a magnetic signal. (b) Information processing-type devices- the central aim of these devices will be to address the challenge of designing a scalable information-processing architecture for spin qubits, where qubits can be coherently coupled across varied length scales while maintaining local addressability. For this purpose, theoretical schemes and proof-of-principle experiments will be demonstrated for coherently coupling classical signals to spin qubits locally via electrical pumping of designed magnon resonance modes. In addition, schemes will be developed for transferring information between spin-qubits and magnons in the quantum regime by designing the magnetic resonance modes. To achieve above goals, the principal investigator will translate the well-established design principles for photon/phonon-qubit hybrids (i.e. cavity and circuit quantum electrodynamics) to the proposed magnon-spin-qubit systems. Beyond these similarities, magnons also offer unique capabilities, such as condensation into superfluid-like, as well as, soliton-like modes, and inherent chiral propagation. The proposed research is thus expected to uncover fundamentally new device concepts unique to magnonic system, such as unidirectional chiral spin-spin coupling. Exploring such device concepts theoretically will also form an integral part of this proposal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子系统表现出令人着迷的违反直觉的叠加特性,即同时处于多个状态的能力,以及纠缠,即发展长距离多体关联的能力。这些特性为构建量子技术提供了机会,例如传感,通信和信息处理,具有经典领域无法实现的能力。近年来,在这一承诺的推动下,在设计和控制各种单个量子系统方面取得了巨大进展。其中,绝缘材料中的自旋缺陷,即微观自旋量子位(量子位)特别有前途。 自旋通过它们的磁偶极矩与环境相互作用:这一事实用于以前所未有的空间分辨率和灵敏度对磁场进行量子感测。另一方面,承载自旋量子比特的典型材料中的环境产生弱磁场,因此自旋量子比特中编码的量子态可以存活很长时间,这使得自旋量子比特成为量子存储器和信息处理的有吸引力的候选者。下一个前沿领域旨在扩展基于自旋的量子硬件的功能,包括开发自旋量子位的能力:(i)在磁场之外感测信号,以开发新型量子传感器,以及(ii)可控地相互作用,同时保留单个可寻址性,用于量子信息处理。然而,这已经证明是具有挑战性的,因为缺乏可以可控地和强耦合到自旋量子位以及广泛的外部信号的介体。在这个项目中,主要研究人员将利用磁振子(即磁铁中的集体激发)作为一种全新的中介体来应对这一挑战。在与研究的紧密结合中,首席研究员还将开发一门量子工程课程,用于培训本科生、研究生和行业专业人士,以增强美国量子智能劳动力。这项研究的目的是通过将理论与原理验证实验相结合来揭示新型磁振子自旋量子比特混合器件。特别是,主要研究者将研究以下器械类型。(a)传感型设备-这些设备的中心目标将是增强自旋量子比特对信号的传感能力,例如电场,温度。这将通过使用磁振子作为外部信号到磁信号的换能器来实现。(b)信息处理型设备-这些设备的中心目标将是解决为自旋量子位设计可扩展信息处理架构的挑战,其中量子位可以在不同长度尺度上相干耦合,同时保持本地可寻址性。为此,理论方案和原理验证实验将被证明相干耦合经典信号自旋量子比特本地通过设计的磁振子共振模式的电泵浦。此外,将通过设计磁共振模式,开发在量子体系中自旋量子比特和磁振子之间传输信息的方案。为了实现上述目标,主要研究者将把光子/声子-量子比特混合体的设计原理(即腔和电路量子电动力学)转化为所提出的磁振子-自旋-量子比特系统。除了这些相似性之外,磁振子还提供了独特的能力,例如凝结成超流体状以及孤子状模式,以及固有的手性传播。因此,拟议的研究有望从根本上揭示磁振子系统特有的新器件概念,例如单向手性自旋-自旋耦合。从理论上探索这种设备的概念也将成为这个建议的一个组成部分。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electric field control of interaction between magnons and quantum spin defects
- DOI:10.1103/physrevresearch.4.l012025
- 发表时间:2020-12
- 期刊:
- 影响因子:4.2
- 作者:Abhishek. B. Solanki;S. Bogdanov;M. M. Rahman-M.;A. Rustagi;N. Dilley;Tingting Shen;Wen-Yi Tong;Punyashloka Debashis;Zhihong Chen;J. Appenzeller;Yong P Chen;V. Shalaev;P. Upadhyaya
- 通讯作者:Abhishek. B. Solanki;S. Bogdanov;M. M. Rahman-M.;A. Rustagi;N. Dilley;Tingting Shen;Wen-Yi Tong;Punyashloka Debashis;Zhihong Chen;J. Appenzeller;Yong P Chen;V. Shalaev;P. Upadhyaya
Sensing chiral magnetic noise via quantum impurity relaxometry
- DOI:10.1103/physrevb.102.220403
- 发表时间:2020-12-04
- 期刊:
- 影响因子:3.7
- 作者:Rustagi, Avinash;Bertelli, Iacopo;Upadhyaya, Pramey
- 通讯作者:Upadhyaya, Pramey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pramey Upadhyaya其他文献
Pramey Upadhyaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pramey Upadhyaya', 18)}}的其他基金
Magnetic Octupole Based Next-generation Spintronic Devices in XY-like Chiral Antiferromagnets
基于磁性八极子的类 XY 手性反铁磁体中的下一代自旋电子器件
- 批准号:
2331109 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Enabling Quantum Leap: Electrically tunable, long-distance coherent coupling between room temperature qubits mediated by magnons in low-dimensional magnets
EAGER:实现量子飞跃:由低维磁体中的磁振子介导的室温量子位之间的电可调、长距离相干耦合
- 批准号:
1838513 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
- 批准号:82372269
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
- 批准号:82374540
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
自旋为1的Spin-Peierls模型的量子相变研究
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
- 批准号:82060566
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
- 批准号:81902698
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
- 批准号:11801499
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Spin-Seebeck效应中多自由度耦合的非平衡动力学研究
- 批准号:11864001
- 批准年份:2018
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
几乎平坦流形上的Spin结构和配边问题
- 批准号:11801186
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ExpandQISE: Track 1: Understanding and controlling decoherence in hybrid spin qubit-magnon systems for advancing education and building workforce in emerging quantum technologies
ExpandQISE:轨道 1:理解和控制混合自旋量子位-磁振子系统中的退相干,以推进新兴量子技术的教育和培养劳动力
- 批准号:
2328822 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Magnon-phonon transport in spin insulatronics devices
自旋绝缘电子器件中的磁振子-声子输运
- 批准号:
2885352 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
Magnon spin-orbit torques in two-dimensional van der Waals magnets based heterostructures
基于异质结构的二维范德华磁体中的磁振子自旋轨道扭矩
- 批准号:
22K14561 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermodynamics of magnon gases and Bose-Einstein condensation driven by pure spin currents
纯自旋流驱动的磁振子气体和玻色-爱因斯坦凝聚的热力学
- 批准号:
416727653 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Research Grants
Spin and thermal transport mediated by magnon cluster of spin multipole origin
自旋多极磁振子簇介导的自旋和热传输
- 批准号:
19K03678 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spin-based probes of magnetic dynamics in the few-magnon regime
少磁振子区域中基于自旋的磁动力学探针
- 批准号:
RTI-2020-00119 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Research Tools and Instruments
Spin dynamics in antiferromagnetic nanofilms studied by phonon-magnon interaction
通过声子-磁振子相互作用研究反铁磁纳米膜中的自旋动力学
- 批准号:
18H01859 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel magnon transport phenomena under spin textures with nontrivial topology and symmetry
具有非平凡拓扑和对称性的自旋纹理下的新型磁振子输运现象
- 批准号:
18H03685 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Determination of magnon dispersion and lifetime of spin-Seebeck insulators
自旋塞贝克绝缘体磁振子色散和寿命的测定
- 批准号:
19K21031 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
antiferromagnetic magnon spin valve
反铁磁磁振子自旋阀
- 批准号:
17K14331 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Young Scientists (B)