CAREER: Probing Chemistry of Surface-Supported Nanostructures at the Angstrom-Scale

职业:埃级表面支撑纳米结构的化学探索

基本信息

  • 批准号:
    1944796
  • 负责人:
  • 金额:
    $ 68.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Scanning tunneling microscopy (STM) technology was invented nearly 40 years ago. STM produced the first images of single atoms on a surface. Around the same time, it was discovered that light signals emitted from a vibrating molecule could be amplified more than a million times if the molecule was on the tip of a nanometer-scale metal tip. In this project funded by the Chemical Structure Dynamics and Mechanisms (CSDM-A) program of the Chemistry Division, Professor Nan Jiang of the Department of Chemistry at the University of Illinois at Chicago is developing a state-of-the-art technique that combines scanning tunneling microscopy (STM) with tip-enhanced Raman spectroscopy (TERS) to study bond stretching in an individual molecule with angstrom-scale spatial resolution (an angstrom is one hundred millionths of a centimeter). Using his TERS technique, Professor Jiang and his students study how individual molecules align relative to each other on surfaces. The Jiang research group seeks to uncover the details of how single molecules interact with surfaces. This research may ultimately provide fundamental knowledge that will able the control of surface-supported molecular structures and reactions. As part of this CAREER project, Professor Jiang and his group are bringing the excitement of chemistry research opportunities to community college and local high school students by offering them hands-on research experience in physical chemistry at the single molecule level. Dr. Jiang improves the participation of undergraduate students in experimental chemistry research by establishing a One-Week Physical Chemistry Workshop at UIC. In this workshop, Chicago City Colleges students from diverse backgrounds are exposed to scientific career paths. Dr. Jiang's group provides handheld Raman equipment to community college students in the Chicago area with online training materials and data analysis procedures. This sharing of equipment and data enriches the general chemistry laboratory experience.This project focuses on interrogating the mechanisms of forming and breaking chemical bonds at the angstrom-scale in various chemical environments using novel approaches. The combination of STM imaging with the detailed chemical information provided by Raman spectroscopy allows the interactions between organic adsorbates and specific binding sites on solid surfaces to be probed with spatial and spectroscopic resolution. Furthermore, Raman one-dimensional (1D) line profiles and two-dimensional (2D) mapping achieved with angstrom-scale spatial resolution provide the location of these vibrational modes on the surface, and hence, define the interactions between these molecules and specific binding sites. Detailed mechanistic studies of the elementary steps of surface-supported structure formation are expected to lead to improvements in designing new atom- and energy-efficient materials and molecular assemblies with tailored chemical properties. The students engaged in this research and education project gain valuable experience in both scanning microscopy and optical spectroscopy, as well as quantum mechanics theory calculations which aid in the interpretation of experimental data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
扫描隧道显微镜(STM)技术是近40年前发明的。STM制作了第一批表面单个原子的图像。大约在同一时间,人们发现,如果分子位于纳米级金属尖端,振动分子发出的光信号可以放大一百万倍以上。在这个由化学系化学结构动力学和机制(CSDM-A)计划资助的项目中,芝加哥伊利诺伊大学化学系的江南教授正在开发一种最先进的技术,将扫描隧道显微镜(STM)和尖端增强拉曼光谱(TERS)相结合,以埃尺度的空间分辨率(埃是百万分之一厘米)来研究单个分子中的键伸展。使用他的TERS技术,江教授和他的学生研究了单个分子如何在表面上相对于彼此排列。江的研究小组试图揭示单分子如何与表面相互作用的细节。这项研究最终可能提供能够控制表面支撑的分子结构和反应的基础知识。作为这一职业项目的一部分,江教授和他的团队正在为社区大学和当地高中生带来令人兴奋的化学研究机会,为他们提供单分子水平的物理化学实践研究经验。通过在UIC开设为期一周的物理化学研讨会,江博士提高了本科生在实验化学研究中的参与度。在这个研讨会中,来自不同背景的芝加哥城市学院的学生接触到了科学的职业道路。江博士的团队为芝加哥地区的社区大学生提供手持拉曼设备,并提供在线培训材料和数据分析程序。这种设备和数据的共享丰富了一般化学实验室的经验。这个项目专注于使用新的方法在不同的化学环境中询问在埃尺度上形成和断裂化学键的机制。扫描隧道显微镜成像与拉曼光谱提供的详细化学信息相结合,可以用空间和光谱分辨率来探测有机吸附物与固体表面特定结合位置之间的相互作用。此外,拉曼一维(1D)线轮廓和具有埃尺度空间分辨率的二维(2D)映射提供了这些振动模式在表面上的位置,从而定义了这些分子和特定结合位置之间的相互作用。对表面支撑结构形成的基本步骤进行详细的机理研究,有望在设计具有量身定制的化学性质的新的原子和能源高效材料和分子组件方面有所改进。参与这一研究和教育项目的学生在扫描显微镜和光学光谱学以及有助于解释实验数据的量子力学理论计算方面获得了宝贵的经验。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconfigurable perovskite nickelate electronics for artificial intelligence
用于人工智能的可重构钙钛矿镍酸盐电子器件
  • DOI:
    10.1126/science.abj7943
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Zhang, Hai-Tian;Park, Tae Joon;Islam, A. N.;Tran, Dat S.;Manna, Sukriti;Wang, Qi;Mondal, Sandip;Yu, Haoming;Banik, Suvo;Cheng, Shaobo
  • 通讯作者:
    Cheng, Shaobo
Proximity and single-molecule energetics
  • DOI:
    10.1126/science.abj5860
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Linfei Li;Nan Jiang
  • 通讯作者:
    Linfei Li;Nan Jiang
Chemically imaging nanostructures formed by the covalent assembly of molecular building blocks on a surface with ultrahigh vacuum tip-enhanced Raman spectroscopy
  • DOI:
    10.1088/1361-648x/ac57d8
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Schultz;Linfei Li;Sayantan Mahapatra;Nan Jiang
  • 通讯作者:
    J. Schultz;Linfei Li;Sayantan Mahapatra;Nan Jiang
Localized surface plasmon controlled chemistry at and beyond the nanoscale
  • DOI:
    10.1063/5.0143947
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sayantan Mahapatra;Dairong Liu;Chamath Siribaddana;Kai Wang;Linfei Li;Nan Jiang
  • 通讯作者:
    Sayantan Mahapatra;Dairong Liu;Chamath Siribaddana;Kai Wang;Linfei Li;Nan Jiang
Chemical Characterization of a Three-Dimensional Double-Decker Molecule on a Surface via Scanning-Tunneling-Microscopy-Based Tip-Enhanced Raman Spectroscopy
通过基于扫描隧道显微镜的尖端增强拉曼光谱对表面上的三维双层分子进行化学表征
  • DOI:
    10.1021/acs.jpcc.2c01434
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahapatra, Sayantan;Schultz, Jeremy F.;Li, Linfei;Zhang, Xu;Jiang, Nan
  • 通讯作者:
    Jiang, Nan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nan Jiang其他文献

Multi-objective optimization of an innovative power-cooling integrated system based on gas turbine cycle with compressor inlet air precooling, Kalina cycle and ejector refrigeration cycle
基于压气机进风预冷、卡林纳循环和喷射制冷循环的燃气轮机循环创新电冷集成系统多目标优化
  • DOI:
    10.1016/j.enconman.2021.114473
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Du;Nan Jiang;Yicen Zhang;Xu Wang;Pan Zhao;Jiangfeng Wang;Yiping Dai
  • 通讯作者:
    Yiping Dai
Optimization investigation on geometrical parameters of a multistage asymmetric fin-type DBD reactor for improved degradation of toluene
多级非对称翅片式 DBD 反应器几何参数优化研究以改善甲苯降解
Semantics-Aware Remote Estimation via Information Bottleneck-Inspired Type Based Multiple Access
通过信息瓶颈启发的基于类型的多路访问进行语义感知远程估计
  • DOI:
    10.48550/arxiv.2212.09337
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meiyi Zhu;Chunyan Feng;Caili Guo;Zhe Liu;Nan Jiang;O. Simeone
  • 通讯作者:
    O. Simeone
A shaking table real-time substructure experiment of an equipment–structure–soil interaction system
设备—结构—土壤相互作用系统振动台实时子结构实验
  • DOI:
    10.1177/1687814017724090
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Chongxiang Zhang;Nan Jiang
  • 通讯作者:
    Nan Jiang
Hierarchical Automatic Curriculum Learning: Converting a Sparse Reward Navigation Task into Dense Reward
分层自动课程学习:将稀疏奖励导航任务转化为密集奖励
  • DOI:
    10.1016/j.neucom.2019.06.024
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Nan Jiang;Sheng Jin;Changshui Zhang
  • 通讯作者:
    Changshui Zhang

Nan Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nan Jiang', 18)}}的其他基金

CAREER: New Algorithms and Models for Turbulence in Incompressible Fluids
职业:不可压缩流体湍流的新算法和模型
  • 批准号:
    2143331
  • 财政年份:
    2022
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Foundations of Offline Reinforcement Learning
职业:离线强化学习的理论基础
  • 批准号:
    2141781
  • 财政年份:
    2022
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Continuing Grant
Probing Local Structural and Chemical Properties of Atomically Thin Two-Dimensional Materials by Optical Scanning Tunneling Microscopy
通过光学扫描隧道显微镜探测原子薄二维材料的局部结构和化学性质
  • 批准号:
    2211474
  • 财政年份:
    2022
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Continuing Grant
Efficient Ensemble Methods for Predictive Fluid Flow Simulations Subject to Uncertainty
用于预测不确定性流体流动模拟的有效集成方法
  • 批准号:
    2120413
  • 财政年份:
    2021
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Experimental and Computational Studies for Understanding the Interplay of Photoreactive Materials and Persistent Contaminants
合作研究:用于了解光反应材料和持久性污染物相互作用的综合实验和计算研究
  • 批准号:
    1807465
  • 财政年份:
    2018
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Standard Grant
Efficient Ensemble Methods for Predictive Fluid Flow Simulations Subject to Uncertainty
用于预测不确定性流体流动模拟的有效集成方法
  • 批准号:
    1720001
  • 财政年份:
    2017
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Standard Grant
Time-Resolved EELS of Photonic Crystals and Glasses
光子晶体和玻璃的时间分辨 EELS
  • 批准号:
    0603993
  • 财政年份:
    2006
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Continuing Grant

相似国自然基金

Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Probing the roles of reactive iodine and bromine in Arctic halogen chemistry
探讨活性碘和溴在北极卤素化学中的作用
  • 批准号:
    2337313
  • 财政年份:
    2024
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Standard Grant
Probing bioinorganic chemistry processes in the bloodstream
探索血液中的生物无机化学过程
  • 批准号:
    RGPIN-2019-04376
  • 财政年份:
    2022
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Discovery Grants Program - Individual
Radio Studies of Planetary Nebulae: Probing Radiation-driven Molecular Chemistry
行星状星云的射电研究:探测辐射驱动的分子化学
  • 批准号:
    2206033
  • 财政年份:
    2022
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Standard Grant
Probing bioinorganic chemistry processes in the bloodstream
探索血液中的生物无机化学过程
  • 批准号:
    RGPIN-2019-04376
  • 财政年份:
    2021
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Discovery Grants Program - Individual
Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
  • 批准号:
    10447575
  • 财政年份:
    2021
  • 资助金额:
    $ 68.61万
  • 项目类别:
Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
  • 批准号:
    10155128
  • 财政年份:
    2021
  • 资助金额:
    $ 68.61万
  • 项目类别:
Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
  • 批准号:
    10571701
  • 财政年份:
    2021
  • 资助金额:
    $ 68.61万
  • 项目类别:
CAREER: Probing Polysulfide Redox Chemistry in Tunable Metal-Organic Frameworks for Energy Storage
职业:探索用于储能的可调谐金属有机框架中的多硫化物氧化还原化学
  • 批准号:
    1945114
  • 财政年份:
    2020
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Continuing Grant
Probing bioinorganic chemistry processes in the bloodstream
探索血液中的生物无机化学过程
  • 批准号:
    RGPIN-2019-04376
  • 财政年份:
    2020
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Discovery Grants Program - Individual
Probing bioinorganic chemistry processes in the bloodstream
探索血液中的生物无机化学过程
  • 批准号:
    RGPIN-2019-04376
  • 财政年份:
    2019
  • 资助金额:
    $ 68.61万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了