CAREER: Advancing Space Optical Communication Systems Via Hybrid Model-Based and Learning-Based Frameworks
职业:通过基于模型和基于学习的混合框架推进空间光通信系统
基本信息
- 批准号:1944828
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Space optical communication (SOC) can provide orders-of-magnitude higher data rates than its Radio-Frequency (RF) communication counterpart and promises to be a key technology for space communication networks. However, limitations to developing SOC yet to be overcome include: 1) the atmospheric channel is dynamic and not well-understood, preventing its statistical characterization; 2) the traditional communication system design ignores full use of relevant information from real-time data; 3) the complexity of the systems required to achieve the performance gain of SOC (over RF) would increase rapidly, hence SOC engineering solutions must incorporate the complexity as a constraint. To address these challenges, this research develops a systematic design framework which combines model-based and data-driven design paradigms for SOC and where the system 1) models and predicts the long-term dynamics of the atmospheric channel, and 2) proactively adapts its communication and networking strategy to the dynamics of the environment, thereby maximizing end-to-end system performances in terms of data rates, energy efficiency, spectrum efficiency, and link reliability. The proposed approach will demonstrate how SOC can be a reliable platform that complements existing technologies to fulfill the requirements of easy deployment, high data rates, and affordable complexity of future systems. Potential benefits of the project include deploying broadband internet via optical drones in poor countries, thus enabling access to information and education; ensuring connectivity between aircraft, thus improving the safety, reliability, and efficiency of air travel; and enhancing the reliability of space exploratory missions, thus increasing our potential for discovery. The research effort will be integrated with the principal investigator's educational career goal of promoting undergraduate research, encouraging enrollment of high-school students in STEM and recruiting underrepresented students by working with the institution's existing diversity recruitment and support programs.Current communication systems are either difficult to deploy at large scale or limited by the RF spectrum licensing burdens. This project's contributions are significant because they show, via a mix of theoretical and practical frameworks, how SOC can be a reliable platform that complements and enhances existing technologies. The first objective of the research is to derive the performance limits of SOC, which describe the best error probability and channel capacity that a well-designed system can achieve in various relevant settings such as multiple access and relay channels, and accounting for atmospheric impairments. To mitigate the atmospheric effects, a sharp statistical channel model will be devised. The work will encompass deep-space, near-earth and space system networks. While deep space communication is well described via the Poisson channel model, the effects of the atmospheric attenuation and pointing error could be captured via statistical models. Depending on the communication scenarios, an input-dependent or an input-independent Gaussian noise could also be incorporated. The methodology to undertake this objective is based on applying tools from information and communication theories along with a non-parametric statistical channel learning approach. The second objective is to develop powerful machine learning techniques to perform signal classification, estimate parameters of the atmosphere, determine the mapping between input and output data and infer probability distributions in order to design communication systems that can efficiently perform without relying heavily on channel models. Block structure Deep Neural Network (DNN)-based as well as end-to-end DNN-based designs, for point-to-point and multiuser settings, will be considered. The methodology to undertake this objective relies mainly on designing SOC auto-encoders with gradient-free optimization techniques and block structure DNN-based channel estimation, signal classification, and detection.This project is jointly funded by the Communications, Circuits and Sensing Systems (CCSS) Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空间光通信(SOC)可以提供比射频通信高几个数量级的数据速率,有望成为空间通信网络的关键技术。然而,SOC的发展还存在以下局限性:1)大气信道是动态的,人们对它的了解不够,无法进行统计特性描述; 2)传统的通信系统设计忽略了对实时数据中相关信息的充分利用; 3)实现SOC(在RF上)的性能增益所需的系统的复杂性将迅速增加,因此SOC工程解决方案必须将复杂性作为约束。为了应对这些挑战,本研究开发了一个系统的设计框架,该框架结合了SOC的基于模型和数据驱动的设计范例,其中系统1)建模和预测大气信道的长期动态,2)主动调整其通信和网络策略以适应环境的动态,从而在数据速率,能源效率,频谱效率和链路可靠性。所提出的方法将展示SOC如何成为一个可靠的平台,补充现有的技术,以满足未来系统的简单部署,高数据速率和负担得起的复杂性的要求。该项目的潜在好处包括通过光学无人机在贫穷国家部署宽带互联网,从而实现信息和教育的获取;确保飞机之间的连接,从而提高航空旅行的安全性,可靠性和效率;提高太空探索任务的可靠性,从而增加我们的发现潜力。这项研究工作将与首席研究员的教育事业目标相结合,即促进本科生研究,鼓励高中生入学STEM,并通过与该机构现有的多样性招聘和支持计划合作,招募代表性不足的学生。目前的通信系统要么难以大规模部署,要么受到射频频谱许可负担的限制。该项目的贡献是重要的,因为它们通过理论和实践框架的混合展示了SOC如何成为一个补充和增强现有技术的可靠平台。研究的第一个目标是推导SOC的性能极限,它描述了一个设计良好的系统在各种相关设置(如多址接入和中继信道)中可以实现的最佳错误概率和信道容量,并考虑大气损伤。为了减轻大气的影响,将设计一个尖锐的统计信道模型。这项工作将包括深空、近地和空间系统网络。虽然深空通信通过泊松信道模型得到了很好的描述,但大气衰减和指向误差的影响可以通过统计模型来捕获。取决于通信场景,还可以并入依赖于输入或独立于输入的高斯噪声。实现这一目标的方法论基于应用信息和通信理论的工具以及非参数统计通道学习方法,沿着。第二个目标是开发强大的机器学习技术来执行信号分类,估计大气参数,确定输入和输出数据之间的映射,并推断概率分布,以便设计可以有效执行而不严重依赖于信道模型的通信系统。将考虑基于块结构深度神经网络(DNN)以及端到端基于DNN的设计,用于点对点和多用户设置。实现这一目标的方法主要依赖于设计具有无梯度优化技术和基于块结构DNN的信道估计、信号分类和检测的SOC自动编码器。电路和传感系统(CCSS)计划和既定计划,以刺激竞争研究(EPSCoR)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zouheir Rezki其他文献
Zouheir Rezki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zouheir Rezki', 18)}}的其他基金
CAREER: Advancing Space Optical Communication Systems Via Hybrid Model-Based and Learning-Based Frameworks
职业:通过基于模型和基于学习的混合框架推进空间光通信系统
- 批准号:
2114779 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
NSF Engines Development Award: Advancing space technologies (CO)
NSF 发动机开发奖:推进空间技术 (CO)
- 批准号:
2308142 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Cooperative Agreement
REU Site: Advancing Space Sciences through Undergraduate Research Experiences (ASSURE)
REU 网站:通过本科生研究经验推进空间科学 (ASSURE)
- 批准号:
2244218 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: Advancing Space Sciences through Undergraduate Research Experiences (ASSURE)
REU 网站:通过本科生研究经验推进空间科学 (ASSURE)
- 批准号:
2150055 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Advancing Methods to Trace and Contextualize Space-Time Interaction Patterns in Movement Data
改进运动数据中时空交互模式的追踪和情境化方法
- 批准号:
2217460 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: Advancing Space Sciences through Undergraduate Research Experiences (ASSURE)
REU 网站:通过本科生研究经验推进空间科学 (ASSURE)
- 批准号:
2050736 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Community Coordinated Modeling Center: Facilitating Space Weather Research, Advancing Forecasting, and Providing Hands-On Opportunities for Education
社区协调建模中心:促进空间天气研究、推进预报并提供实践教育机会
- 批准号:
2140031 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Advancing Space Optical Communication Systems Via Hybrid Model-Based and Learning-Based Frameworks
职业:通过基于模型和基于学习的混合框架推进空间光通信系统
- 批准号:
2114779 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Analysis of diversity effects on above-ground productivity in forests: advancing the mechanistic understanding of spatio-temporal dynamics in canopy space filling using mobile laser scanning
分析多样性对森林地上生产力的影响:利用移动激光扫描推进对冠层空间填充时空动态的机制理解
- 批准号:
320926971 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Research Grants
REU Site: Advancing Space Science through Undergraduate Research Experience (ASSURE) at University of California (UC) Berkeley
REU 网站:通过加州大学 (UC) 伯克利分校的本科生研究经验 (ASSURE) 推进空间科学
- 批准号:
1461277 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant