CAREER:Beyond Ideal Quantum Materials: Understanding the Critical Role of Disorder and Electron-Electron Interactions

职业:超越理想量子材料:了解无序和电子-电子相互作用的关键作用

基本信息

  • 批准号:
    1944974
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYFunctional quantum materials, such as high temperature superconductors, colossal magnetoresistance materials, and dilute magnetic semiconductors, are at the forefront of condensed matter physics research. These materials are being actively explored for transformative technological applications, including efficient energy generation, storage, and transmission. Understanding the fundamental mechanisms behind the exotic phases of matter emerging in these quantum materials is a grand challenge, which must be overcome to maximize technological advancement. Due to the complexity of the many-electron problem, analytic theories often become unreliable, and numerical treatment is required. This CAREER award supports computational and theoretical research and education aimed at better understanding and description of electron localization and phase transitions in quantum materials, properties of which are governed by strong electron-electron interactions and disorder. So far, most of the theoretical and computational research on such quantum materials has been performed on idealized systems, often based on overly simplified toy models, which do not take into account the intrinsic complexity of real materials. Understanding exotic phases of matter in newly discovered quantum materials requires going beyond such simplifications. This research will extend the existing numerical tools to confront material complexity and enable in-depth study of electron localization and phase transitions in quantum systems. An important component of this project is education and outreach for a diverse body of K-12 and college students. The goal of this effort is to develop a diverse and competitive quantum smart workforce by integrating research and education. This goal will be met through: 1) training graduate and undergraduate students in research and high-performance computing; 2) developing an innovative undergraduate material physics course with an emphasis on recent advances in condensed matter physics and computation; 3) conducting computational workshop for graduate students; 4) providing mentoring and outreach activities for women and other groups underrepresented in physics, and targeted outreach to engage young women at the middle- and high-school levels.TECHNICAL SUMMARYThis CAREER award supports research and education that focuses on theoretical and computational study of functional quantum materials with strong electron-electron interactions and disorder. Much of our present knowledge of correlated electron quantum materials is built on studies performed for idealized and simplified toy models that do not take into account the intrinsic complexity of real systems. The overarching goal of the proposed research is to enhance understanding of quantum materials by conducting studies of quantum materials beyond ideal models, via the inclusion of disorder, multi-orbital structure, and long-range Coulomb interactions. The research team will develop new theoretical approaches and many-body numerical tools that will extend the capabilities of the existing Monte Carlo and quantum cluster embedding methods. Specifically, the research will focus on several fundamental open questions of electron localization and metal-insulator transition in two-dimensional electron systems that have emerged in the context of recent experimental discoveries. Examples include: 1) determining the fate of Mott metal-insulator transition in two-dimensional electron systems by systematically studying the effect of non-local correlations and long-range electron-electron interactions; 2) investigating the interplay between disorder, electron-electron interactions, and quantum criticality near the Mott metal-insulator transition in single band and multi-orbital systems; 3) exploiting disorder to localize electrons in intermediate band semiconductors and topological insulators using ab-initio based effective Hamiltonian methods.The goal of the educational and outreach components is to develop a diverse and competitive quantum smart workforce by integrating research and education. This goal will be met through several components: 1) designing an innovative quantum material undergraduate material science course with the emphasis on recent advances in condensed matter physics and computation; 2) conducting computational workshops for graduate students on the modern quantum many-body numerical techniques for strongly interacting and disordered systems; 3) training undergraduate and graduate students in quantum material research and high-performance computing. A strong emphasis of the proposed outreach is targeted towards mentoring and encouragement of participation of women and other group underrepresented in scientific disciplines by the PI’s established Women in Physics Group. The PI will organize various outreach physics demonstration workshops for middle and high school students as well as networking and professional development mentoring events.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
功能量子材料,如高温超导体,巨磁阻材料和稀磁半导体,处于凝聚态物理研究的最前沿。这些材料正在积极探索变革性的技术应用,包括高效的能源生产,储存和传输。理解这些量子材料中出现的物质的奇异相背后的基本机制是一个巨大的挑战,必须克服这个挑战才能最大限度地提高技术进步。由于多电子问题的复杂性,解析理论往往变得不可靠,需要数值处理。 该职业奖支持计算和理论研究和教育,旨在更好地理解和描述量子材料中的电子局域化和相变,其性质受强电子-电子相互作用和无序的控制。到目前为止,对这种量子材料的大部分理论和计算研究都是在理想化的系统上进行的,通常基于过于简化的玩具模型,没有考虑到真实的材料的内在复杂性。理解新发现的量子材料中物质的奇异相需要超越这种简化。这项研究将扩展现有的数值工具,以应对材料的复杂性,并使量子系统中的电子局域化和相变的深入研究成为可能。该项目的一个重要组成部分是为K-12和大学生的多样化群体提供教育和宣传。这一努力的目标是通过整合研究和教育来开发多样化和有竞争力的量子智能劳动力。这一目标将通过以下方式实现:1)培养研究生和本科生的研究和高性能计算; 2)开发一个创新的本科材料物理课程,重点是凝聚态物理和计算的最新进展; 3)为研究生举办计算研讨会; 4)为妇女和其他在物理学领域代表性不足的群体提供指导和外联活动,技术总结该职业奖支持研究和教育,重点是对具有强电子的功能量子材料的理论和计算研究。电子相互作用和无序。我们目前对相关电子量子材料的大部分知识都是建立在对理想化和简化的玩具模型的研究上的,这些模型没有考虑到真实的系统的内在复杂性。拟议研究的总体目标是通过对理想模型之外的量子材料进行研究,通过纳入无序,多轨道结构和远程库仑相互作用来增强对量子材料的理解。该研究小组将开发新的理论方法和多体数值工具,以扩展现有Monte Carlo和量子簇嵌入方法的能力。具体来说,研究将集中在最近的实验发现的背景下出现的二维电子系统中的电子定位和金属-绝缘体转变的几个基本的开放问题。示例包括:1)通过系统地研究非局域关联和长程电子-电子相互作用的影响,确定二维电子系统中Mott金属-绝缘体跃迁的命运; 2)研究单带和多轨道系统中Mott金属-绝缘体跃迁附近的无序、电子-电子相互作用和量子临界性之间的相互作用; 3)利用基于从头算的有效哈密顿方法,利用无序来定域中带半导体和拓扑绝缘体中的电子。教育和推广部分的目标是通过整合研究和教育,培养多样化和有竞争力的量子智能劳动力。这一目标将通过几个组成部分来实现:1)设计一个创新的量子材料本科材料科学课程,重点是凝聚态物理和计算的最新进展; 2)为研究生举办关于强相互作用和无序系统的现代量子多体数值技术的计算研讨会; 3)培养量子材料研究和高性能计算方面的本科生和研究生。拟议的外联活动的一个重点是指导和鼓励妇女和其他在科学学科中代表性不足的群体参与,这是由PI设立的妇女参与物理学小组进行的。PI将为初中和高中学生组织各种外展物理演示研讨会,以及网络和专业发展指导活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-local corrections to the typical medium theory of Anderson localization
安德森局域化典型介质理论的非局域修正
  • DOI:
    10.1016/j.aop.2021.168454
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Terletska, H.;Moilanen, A.;Tam, K.-M.;Zhang, Y.;Wang, Y.;Eisenbach, M.;Vidhyadhiraja, N.S.;Chioncel, L.;Moreno, J.
  • 通讯作者:
    Moreno, J.
Dynamical mean-field theory of the Anderson-Hubbard model with local and nonlocal disorder in tensor formulation
张量表述中具有局部和非局部无序的 Anderson-Hubbard 模型的动态平均场理论
  • DOI:
    10.1103/physrevb.104.045127
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Weh A.;Zhang Y.;Oestlin A.;Terletska H.;Bauernfeind D.;Tam K-M;Evertz H. G.;Byczuk K.;Vollhardt D.;Chioncel L.
  • 通讯作者:
    Chioncel L.
Dynamical cluster approximation study of electron localization in the extended Hubbard model
  • DOI:
    10.1103/physrevb.104.085129
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    H. Terletska;S. Iskakov;T. Maier;E. Gull
  • 通讯作者:
    H. Terletska;S. Iskakov;T. Maier;E. Gull
One- and two-particle properties of the weakly interacting two-dimensional Hubbard model in proximity to the van Hove singularity
  • DOI:
    10.1103/physrevb.106.035145
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    B. McNiven;H. Terletska;G. T. Andrews;J. LeBlanc
  • 通讯作者:
    B. McNiven;H. Terletska;G. T. Andrews;J. LeBlanc
Single- and two-particle finite size effects in interacting lattice systems
相互作用晶格系统中的单粒子和双粒子有限尺寸效应
  • DOI:
    10.1103/physrevb.106.235106
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Iskakov, Sergei;Terletska, Hanna;Gull, Emanuel
  • 通讯作者:
    Gull, Emanuel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hanna Terletska其他文献

Hanna Terletska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hanna Terletska', 18)}}的其他基金

ExpandQISE: Track 1: Quantum@MTSU: Building QISE Research and Education in Middle Tennessee
展开QISE:轨道 1:Quantum@MTSU:在田纳西州中部建立 QISE 研究和教育
  • 批准号:
    2328752
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Beginnings: Creating and Sustaining a Diverse Community of Expertise in Quantum Information Science (EQUIS) Across the Southeastern United States
起点:在美国东南部创建并维持一个多元化的量子信息科学 (EQUIS) 专业社区
  • 批准号:
    2322591
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Cooperative Agreement
Collaborative Research:Element: Development of MuST, A Multiple Scattering Theory based Computational Software for First Principles Approach to Disordered Materials
合作研究:元素:MuST 的开发,一种基于多重散射理论的计算软件,用于无序材料的第一原理方法
  • 批准号:
    1931367
  • 财政年份:
    2019
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301410
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
  • 批准号:
    24K17352
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Beyond thiols, beyond gold: Novel NHC-stabilized nanoclusters in catalysis
超越硫醇,超越金:催化中新型 NHC 稳定纳米团簇
  • 批准号:
    23K21120
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Research Grant
BeyondSNO: Signalling beyond protein S-nitrosylation - determining the roles of nitroxyl and hydroxylamine
BeyondSNO:蛋白质 S-亚硝基化之外的信号传导 - 确定硝酰基和羟胺的作用
  • 批准号:
    EP/Y027698/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Research Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
  • 批准号:
    EP/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Research Grant
Exploitation of High Voltage CMOS sensors for tracking applications in physics experiments and beyond
利用高压 CMOS 传感器跟踪物理实验及其他领域的应用
  • 批准号:
    MR/X023834/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了