CAREER: Algebraic Methods in Extremal Combinatorics

职业:极值组合中的代数方法

基本信息

  • 批准号:
    1945200
  • 负责人:
  • 金额:
    $ 42.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Extremal combinatorics studies how large or how small a collection of combinatorial objects satisfying certain restrictions can be. This branch of mathematics has witnessed spectacular development in the last few decades, and grown into a rich field with a wide variety of its own approaches and methodology. The main focus of this award is to develop new algebraic methods to solve extremal combinatorial problems, and further our understanding of the independence number and induced substructures of graphs and hypergraphs. This project involves and aims to establish connections across numerous areas, including algebra, combinatorics, probability, and discrete geometry. An integral part of this project is its educational component, which includes organizing junior research workshops and summer REU programs. The long-term education goal of this award is to actively engage undergraduate students in STEM research, provide opportunities for early-career researchers to publicize their works, and enhance the research collaboration between the Mathematics and Computer Science communities.The PI will study several fundamental mathematical questions, including: (i) For which results in extremal combinatorics one can expect a degree strenthening? (ii) To what extent the spectrum of the (pseudo-)adjacency matrix of a graph or hypergraph describes the independence number or induced substructures of a graph? (iii) Is there a quantitative version of Cauchy's Interlace Theorem? Techniques developed from these projects will open the possibility of attacking some of the most important and challenging open problems in combinatorics: Chvatal's Conjecture on intersecting subfamilies, Tomaszewski's Conjecture on signed sums, and the Erdos hypergraph matching conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极值组合学研究满足某些限制的组合对象的集合可以有多大或多小。这一数学分支在过去的几十年里经历了惊人的发展,并以其各种各样的方法和方法论成长为一个丰富的领域。这一奖项的主要目的是发展新的代数方法来解决极值组合问题,并进一步加深我们对图和超图的独立数和导出子结构的理解。这个项目涉及并旨在建立跨越许多领域的联系,包括代数、组合学、概率和离散几何。该项目的一个组成部分是其教育部分,其中包括组织初级研究讲习班和暑期REU计划。该奖项的长期教育目标是积极吸引本科生参与STEM研究,为早期职业研究人员提供宣传他们的工作的机会,并加强数学界和计算机科学界的研究合作。PI将学习几个基本的数学问题,包括:(I)对于极值组合数学的哪些结果,可以获得学位强化?(Ii)图或超图的(伪)邻接矩阵的谱在多大程度上描述了图的独立数或导出子结构?(Iii)柯西的交错定理是否有一个量化版本?从这些项目中开发的技术将开启解决组合学中一些最重要和最具挑战性的公开问题的可能性:查瓦尔关于子族相交的猜想,托马谢夫斯基关于符号和的猜想,以及鄂尔多斯超图匹配猜想。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On local Turán problems
关于图兰本地问题
  • DOI:
    10.1016/j.jcta.2020.105329
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frankl, Peter;Huang, Hao;Rödl, Vojtěch
  • 通讯作者:
    Rödl, Vojtěch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Huang其他文献

span style=font-family:#39;Times New Roman#39;;font-size:10.5pt;Mitochondrial pathology in osteoarthritic ch/spanspan style=font-family:#39;Times New Roman#39;;font-size:10.5pt;ondrocytes
骨关节炎软骨细胞的线粒体病理学
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Longhuo Wu;Haiqing Liu;Linfu Li;Hai Liu;Qilai Cheng;Hongliang Li;Hao Huang
  • 通讯作者:
    Hao Huang
Electrode Engineering in MoS2 MOSFET: Different Semiconductor/Metal Interfaces
MoS2 MOSFET 的电极工程:不同的半导体/金属界面
  • DOI:
    10.1002/aelm.202200513
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yang Li;Xisai Zhang;Xinpei Duan;Wencheng Niu;Shengjie Zhao;Xiaobo He;Hao Huang;Xingqiang Liu;Xuming Zou;Lei Li;Fukai Shan;Zhenyu Yang
  • 通讯作者:
    Zhenyu Yang
Genetic evidence that Nkx2.2 and Pdgfra are major determinants of the timing of oligodendrocyte differentiation in the developing CNS
遗传证据表明 Nkx2.2 和 Pdgfra 是发育中中枢神经系统少突胶质细胞分化时间的主要决定因素
  • DOI:
    10.1242/dev.095323
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Mengsheng Qiu;Xiaofeng Zhao;Kang Zheng;Hong Li;Hao Huang;Zunyi Zhang;Teresa Mastracci;Michael Wegner;Yiping Chen
  • 通讯作者:
    Yiping Chen
Core@shell poly (acrylic acid) microgels/polyethersulfone beads for dye uptake from wastewater
用于从废水中吸收染料的核@壳聚丙烯酸微凝胶/聚醚砜珠
  • DOI:
    10.1016/j.jece.2017.03.013
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Shengqiu Chen;Xiang Zhang;Hao Huang;Man Zhang;Chuanxiong Nie;Ting Lu;Weifeng Zhao;Changsheng Zhao
  • 通讯作者:
    Changsheng Zhao
Learning to learn point signature for 3D shape geometry
学习 3D 形状几何的点签名
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Hao Huang;Lingjing Wang;Xiang Li;Shuaihang Yuan;Congcong Wen;Yu Hao;Yi Fang
  • 通讯作者:
    Yi Fang

Hao Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Huang', 18)}}的其他基金

Atlanta Lecture Series in Combinatorics and Graph Theory
亚特兰大组合学和图论系列讲座
  • 批准号:
    1700355
  • 财政年份:
    2017
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Standard Grant
Atlanta Lecture Series in Combinatorics and Graph Theory
亚特兰大组合学和图论系列讲座
  • 批准号:
    1606418
  • 财政年份:
    2016
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Standard Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Algebraic Methods for Quantified Constraints
量化约束的代数方法
  • 批准号:
    EP/X03190X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Research Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
  • 批准号:
    2316181
  • 财政年份:
    2023
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Standard Grant
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
  • 批准号:
    RGPIN-2020-05481
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods in quantum information
量子信息中的代数方法
  • 批准号:
    RGPIN-2018-03968
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Discovery Grants Program - Individual
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
  • 批准号:
    RGPIN-2022-03116
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
  • 批准号:
    RGPIN-2018-03880
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
  • 批准号:
    2139462
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Standard Grant
A study of complex spherical codes and designs by algebraic methods
用代数方法研究复杂的球形代码和设计
  • 批准号:
    22K03410
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic Topology: Methods, Computation, and Science 2022
代数拓扑:方法、计算和科学 2022
  • 批准号:
    2208855
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了