Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
基本信息
- 批准号:1945869
- 负责人:
- 金额:$ 8.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award: DMS 1710500, Principal Investigator: Bin GuoThe Einstein equations from gravitational theory have a geometric interpretation that picks out a preferred metric to determine lengths and angles on a space. The determination of conditions for solvability of those equations has seen recent progress and continues to pose important open problems in geometry. The projects to be carried out include approaches to those problems through geometric flows that deform the metric on a space in a direction that might lead to a canonical metric, or, alternatively, might develop a singularity that blocks progress toward such a metric.Some of these projects will study the formation of long-time and short-time singularities from Kaehler-Ricci flow which are closely related to the analytic minimal model program proposed by Song and Tian. The conical Kaehler-Einstein equations have been very successful for Fano manifolds, and these projects will investigate the existence and properties of conical canonical Kaehler metrics in algebraic varieties and explore their applications in solving open problems in algebraic geometry. Another line of work will study coupled systems of parabolic type which originated from general relativity in physics. The solutions to the coupled systems will yield Einstein vacuum metrics and shed light on the structure of the underlying space.
奖项:DMS 1710500,首席研究员:郭斌来自引力理论的爱因斯坦方程有一个几何解释,选择一个首选的度量来确定空间上的长度和角度。 这些方程的可解性条件的确定最近取得了进展,并继续在几何中提出重要的开放问题。将要进行的项目包括通过几何流来解决这些问题的方法,这些几何流使空间上的度量在可能导致规范度量的方向上变形,或者,可能会发展出一个奇点,阻碍这种度量的进展。其中一些项目将研究凯勒的长时间和短时间奇点的形成-Ricci流与Song和Tian提出的解析极小模型程序密切相关。锥形Kaehler-Einstein方程在Fano流形上已经非常成功,这些项目将研究代数簇中锥形正则Kaehler度量的存在性和性质,并探索它们在解决代数几何中的公开问题中的应用。 另一项工作将研究抛物型耦合系统,它起源于物理学中的广义相对论。耦合系统的解将产生爱因斯坦真空度规,并揭示底层空间的结构。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the degeneration of asymptotically conical Calabi–Yau metrics
渐近圆锥形卡拉比丘度规的退化
- DOI:10.1007/s00208-021-02229-z
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Collins, T.
- 通讯作者:Collins, T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Guo其他文献
Eco-friendly non-acid intercalation and exfoliation of graphite to graphene nanosheets in the binary-peroxidant system for EMI shielding
用于 EMI 屏蔽的二元过氧化物体系中石墨与石墨烯纳米片的环保非酸插层和剥离
- DOI:
10.1016/j.cclet.2021.05.064 - 发表时间:
2021-06 - 期刊:
- 影响因子:9.1
- 作者:
Ping Wang;Bin Guo;Zhi Zhang;Weinan Gao;Wei Zhou;Huaxin Ma;Wenyu Wu;Junfeng Han;Ruijun Zhang - 通讯作者:
Ruijun Zhang
Event-triggered adaptive fuzzy tracking control for a class of fractional-order uncertain nonlinear systems with external disturbance
一类有外扰的分数阶不确定非线性系统的事件触发自适应模糊跟踪控制
- DOI:
10.1016/j.chaos.2022.112393 - 发表时间:
2022-08 - 期刊:
- 影响因子:7.8
- 作者:
Xingxing You;Mingyang Shi;Bin Guo;Yuqi Zhu;Wuxing Lai;Songyi Dian;Kai Liu - 通讯作者:
Kai Liu
Smart Cities: Recent Trends, Methodologies, and Applications
智慧城市:最新趋势、方法和应用
- DOI:
10.1155/2017/7090963 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Gavalas;Petros Nicopolitidis;A. Kameas;C. Goumopoulos;P. Bellavista;L. Lambrinos;Bin Guo - 通讯作者:
Bin Guo
Gja1 acts downstream of Acvr1 to regulate uterine decidualization via Hand2 in mice
Gja1 作用于 Acvr1 下游,通过 Hand2 调节小鼠子宫蜕膜化
- DOI:
10.1530/joe-16-0583 - 发表时间:
2017 - 期刊:
- 影响因子:4
- 作者:
Haifan Yu;Zhanpeng Yue;Kai Wang;Zhanqing Yang;Hongliang Zhang;Shuang Geng;Bin Guo - 通讯作者:
Bin Guo
Study of the Correlation Between the Doped-Oxygen Species and the Supercapacitive Performance of TiC–CDC Carbon-Based Material
TiC·CDC碳基材料掺杂氧种类与超级电容性能相关性研究
- DOI:
10.1142/s179329201950142x - 发表时间:
2019-11 - 期刊:
- 影响因子:1.2
- 作者:
Yu Gu;Ruijun Zhang;Wenyu Wu;Bin Guo;Ping Wang;Huaxin Ma - 通讯作者:
Huaxin Ma
Bin Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Guo', 18)}}的其他基金
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
- 批准号:
1710500 - 财政年份:2017
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant
相似海外基金
Discovering the Transition Mechanisms in Fundamental Canonical Flows and in Idealized Propulsion Component Systems
发现基本规范流和理想化推进组件系统中的过渡机制
- 批准号:
RGPIN-2016-03619 - 财政年份:2021
- 资助金额:
$ 8.79万 - 项目类别:
Discovery Grants Program - Individual
Discovering the Transition Mechanisms in Fundamental Canonical Flows and in Idealized Propulsion Component Systems
发现基本规范流和理想化推进组件系统中的过渡机制
- 批准号:
RGPIN-2016-03619 - 财政年份:2020
- 资助金额:
$ 8.79万 - 项目类别:
Discovery Grants Program - Individual
Discovering the Transition Mechanisms in Fundamental Canonical Flows and in Idealized Propulsion Component Systems
发现基本规范流和理想化推进组件系统中的过渡机制
- 批准号:
RGPIN-2016-03619 - 财政年份:2019
- 资助金额:
$ 8.79万 - 项目类别:
Discovery Grants Program - Individual
Discovering the Transition Mechanisms in Fundamental Canonical Flows and in Idealized Propulsion Component Systems
发现基本规范流和理想化推进组件系统中的过渡机制
- 批准号:
RGPIN-2016-03619 - 财政年份:2018
- 资助金额:
$ 8.79万 - 项目类别:
Discovery Grants Program - Individual
Discovering the Transition Mechanisms in Fundamental Canonical Flows and in Idealized Propulsion Component Systems
发现基本规范流和理想化推进组件系统中的过渡机制
- 批准号:
RGPIN-2016-03619 - 财政年份:2017
- 资助金额:
$ 8.79万 - 项目类别:
Discovery Grants Program - Individual
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
- 批准号:
1710500 - 财政年份:2017
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant
Discovering the Transition Mechanisms in Fundamental Canonical Flows and in Idealized Propulsion Component Systems
发现基本规范流和理想化推进组件系统中的过渡机制
- 批准号:
RGPIN-2016-03619 - 财政年份:2016
- 资助金额:
$ 8.79万 - 项目类别:
Discovery Grants Program - Individual
Canonical metrics and geometric flows on non-compact manifolds
非紧流形上的规范度量和几何流
- 批准号:
327637-2011 - 财政年份:2015
- 资助金额:
$ 8.79万 - 项目类别:
Discovery Grants Program - Individual
Canonical metrics and geometric flows on non-compact manifolds
非紧流形上的规范度量和几何流
- 批准号:
327637-2011 - 财政年份:2014
- 资助金额:
$ 8.79万 - 项目类别:
Discovery Grants Program - Individual
Canonical Metrics, Geometric Flows and Formation of Singularities
规范度量、几何流和奇点的形成
- 批准号:
1406124 - 财政年份:2014
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant














{{item.name}}会员




