Canonical Kahler metrics and complex Monge-Ampere equations

规范卡勒度量和复杂的 Monge-Ampere 方程

基本信息

  • 批准号:
    2303508
  • 负责人:
  • 金额:
    $ 15.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The project will focus on addressing open problems in geometric analysis and exploring their applications in various fields such as geometry, topology and mathematical physics. These problems play a central role in active areas of research in mathematics, including differential geometry, partial differential equations (PDE), and high-dimensional supergravity. Given the interdisciplinary nature of this project, it will foster collaborations among researchers from various disciplines, and the outcomes of the project will introduce novel approaches and provide valuable insights into the analytic study of the geometry of singular varieties. An important objective of the project is to establish a foundation for the integration of research and education, enriching the mathematics curriculum and enhancing the mathematics education at Rutgers - Newark. In line with this objective, the Principal Investigator (PI) will organize seminars and deliver lectures, aiming to contribute towards the advancement of mathematics education nationwide. The PI will also engage in mentoring at at high school, undergraduate, and graduate levels. The PI will continue to develop novel approaches in the regularity theory for linear and fully nonlinear PDEs on complex manifolds, with a specific focus on the complex Monge-Ampere equations and the associated Kahler metrics. The geometry of these metrics will be investigated from both analytic and geometric perspectives. An emphasis will be placed on studying the degeneration of a family of Kahler metrics, including the geometric convergence of Kahler-Ricci flow and other flows arising from geometry and physics. To this end, the PI will advance the techniques of auxiliary differential equations, aiming to analyze the compactness of the space of the family of Kahler metrics. Along this path, it is expected that new analytic tools such as uniform Poincare and Sobolev inequalities, as well as heat kernel estimates, will be developed. Furthermore, combined with techniques from complex geometry and algebraic geometry, these tools will be employed to investigate the asymptotic behavior of metrics near singularities. In addition, the PI will continue to explore the parabolic approach, introduced by the PI and collaborators, in high-dimensional supergravity. This exploration aims to discover new ansatz and construct new solutions to the coupled systems, thereby deepening the understanding of the underlying space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将重点解决几何分析中的开放性问题,并探索其在几何、拓扑和数学物理等各个领域的应用。这些问题在包括微分几何、偏微分方程(PDE)和高维超重力在内的活跃数学研究领域中发挥着核心作用。考虑到这个项目的跨学科性质,它将促进来自不同学科的研究人员之间的合作,项目的成果将引入新的方法,并为奇异品种几何的分析研究提供有价值的见解。该项目的一个重要目标是为研究与教育的整合奠定基础,丰富数学课程,加强罗格斯-纽瓦克大学的数学教育。为了实现这一目标,首席研究员(PI)将组织研讨会和讲座,旨在为全国数学教育的进步做出贡献。该项目还将在高中、本科和研究生阶段提供指导。PI将继续在复杂流形上的线性和全非线性偏微分方程的正则性理论中开发新的方法,特别关注复杂的蒙日-安培方程和相关的Kahler度量。这些度量的几何将从解析和几何的角度进行研究。重点将放在研究一类Kahler度量的退化,包括Kahler- ricci流的几何收敛和其他由几何和物理引起的流。为此,PI将推进辅助微分方程技术,旨在分析Kahler度量族空间的紧性。沿着这条道路,预计新的分析工具,如均匀庞加莱和索博列夫不等式,以及热核估计,将得到发展。此外,结合复杂几何和代数几何的技术,这些工具将被用来研究度量在奇点附近的渐近行为。此外,PI将继续探索由PI及其合作者在高维超重力中引入的抛物线方法。这一探索旨在发现新的问题并构建耦合系统的新解,从而加深对底层空间的理解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Guo其他文献

Event-triggered adaptive fuzzy tracking control for a class of fractional-order uncertain nonlinear systems with external disturbance
一类有外扰的分数阶不确定非线性系统的事件触发自适应模糊跟踪控制
  • DOI:
    10.1016/j.chaos.2022.112393
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Xingxing You;Mingyang Shi;Bin Guo;Yuqi Zhu;Wuxing Lai;Songyi Dian;Kai Liu
  • 通讯作者:
    Kai Liu
Cloning and Characterization of a Novel Avirulence Gene (arp3) from Xanthomonas oryzae pv. oryzae
米黄单胞菌新型无毒基因 (arp3) 的克隆和表征
  • DOI:
    10.1080/10425170410001679174
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin Liang;Teng;Bin Guo;Chen Yang;Luyuan Dai;D. Shen
  • 通讯作者:
    D. Shen
Catalytic synthesis of nanodiamond based on CDC principle: influence of different catalysts on types and sizes
基于CDC原理的纳米金刚石催化合成:不同催化剂对类型和尺寸的影响
  • DOI:
    10.1088/1361-6528/ac0d7f
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Bin Guo;Wenyu Wu;Huaxin Ma;Zhao Zhang;Zhi Zhang;Weinan Gao;Wei Zhou;Ruijun Zhang
  • 通讯作者:
    Ruijun Zhang
Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia
从东亚和南亚 POLDER/PARASOL 观测中反演精细模式光吸收碳质气溶胶
  • DOI:
    10.1016/j.rse.2020.111913
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Lei Li;Huizheng Che;Yevgeny Derimian;Oleg Dubovik;Gregory L. Schuster;Cheng Chen;Qiuyue Li;Yaqiang Wang;Bin Guo;Xiaoye Zhang
  • 通讯作者:
    Xiaoye Zhang
Fruit extracts from Phyllanthus emblica accentuate cadmium tolerance and accumulation in Platycladus orientalis: A new natural chelate for phytoextraction.
余甘子的果实提取物增强了侧柏的镉耐受性和积累:一种用于植物提取的新型天然螯合物。
  • DOI:
    10.1016/j.envpol.2021.116996
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Bin Guo;Chen Liu;Yicheng Lin;Hua Li;Ningyu Li;Junli Liu;Qinglin Fu;Wenbin Tong;Haiping Yu
  • 通讯作者:
    Haiping Yu

Bin Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Guo', 18)}}的其他基金

Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1945869
  • 财政年份:
    2019
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1710500
  • 财政年份:
    2017
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant

相似国自然基金

有限时间Kahler-Ricci流与解析极小模型纲领的几何化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
整性特殊凯勒结构及其在两类Hyper-Kahler度量上的应用
  • 批准号:
    12271495
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
具有曲率下界的Kahler流形
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
几类非Kahler复流形的研究
  • 批准号:
    11701414
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
复toric流形和复toric orbifold 上的极值 Kahler 度量问题
  • 批准号:
    11626050
  • 批准年份:
    2016
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
曲率几乎非负的紧致Kahler流形的几何与拓扑
  • 批准号:
    11601044
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
度量几何及其在Kahler几何中的应用
  • 批准号:
    11501501
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
Kahler 曲面中特殊曲面的研究
  • 批准号:
    11471014
  • 批准年份:
    2014
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
Kahler几何与辛拓扑中若干问题的研究
  • 批准号:
    11371345
  • 批准年份:
    2013
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Kahler曲面上极值度量若干问题研究
  • 批准号:
    11271343
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
  • 批准号:
    22K03316
  • 财政年份:
    2022
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1945869
  • 财政年份:
    2019
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
  • 批准号:
    19J01482
  • 财政年份:
    2019
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Canonical Kahler metrics and Moduli spaces
规范卡勒度量和模空间
  • 批准号:
    18K13389
  • 财政年份:
    2018
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Canonical Metrics, the Kahler-Ricci Flow, and Their Applica1ons
规范度量、Kahler-Ricci 流及其应用
  • 批准号:
    1711439
  • 财政年份:
    2017
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
  • 批准号:
    1710500
  • 财政年份:
    2017
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Canonical metrics on Kahler and Riemannian manifolds and their moduli
卡勒和黎曼流形及其模的规范度量
  • 批准号:
    1609335
  • 财政年份:
    2016
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Continuing Grant
Kahler geometry and canonical metrics
卡勒几何和规范度量
  • 批准号:
    1306298
  • 财政年份:
    2013
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Canonical metrics on Kahler manifolds and Monge-Ampere equations
卡勒流形和 Monge-Ampere 方程的规范度量
  • 批准号:
    DE120101167
  • 财政年份:
    2012
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Discovery Early Career Researcher Award
Canonical Kahler metrics, algebro-geometric stability and Sasakian geometry
规范卡勒度量、代数几何稳定性和 Sasakian 几何
  • 批准号:
    24540098
  • 财政年份:
    2012
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了