The granular physics contribution to rate- and state-dependent fault friction
颗粒物理对速率和状态相关的断层摩擦的贡献
基本信息
- 批准号:1946434
- 负责人:
- 金额:$ 32.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Friction plays a critical role in many areas of societal interest, including transportation and manufacturing. In Earth Sciences, understanding friction is critical for a better understanding of the hazards associated with earthquakes and landslides. The friction properties of materials have been studied for centuries, but the physics and chemistry underlying their time dependence remain obscure. Yet, small fluctuations in friction properties during earthquakes and landslides can have tremendous effects on the size and speed of these events. Friction on sliding interfaces such as tectonics faults are usually described by the so called "rate- and state-dependent friction" laws. These empirical laws account for the sliding speed ("rate") and for the evolving properties of the interface termed "state"; this latter, a function of the slip history, is difficult to observe directly. The rate-and-state framework is widely used to model frictional sliding. But the corresponding laws fail to accurately describe laboratory observations for a range of conditions relevant to earthquakes. Here, the team aims to better understand the physics underlying the frictional properties of rocks. The researchers use computer simulations to model the behavior of granular layers of finely-ground rock, called gouge, that are present along tectonic faults. The goal is to test whether rock friction and its time dependence is governed at the grain scale by grain-to-grain interactions. The simulation outputs are constrained by experimental observations: in many cases they describe them better than the most successful rate-and-state friction laws. The team, thus, gradually unveils the physics underlying the behavior of earthquake-generating faults. In addition to its strong societal relevance, this project provides support for an early career scientist as well as training for undergraduate students. To model the behavior of the gouge, the researchers employ Discrete Element Method simulations. They use model geometries and loading conditions designed to mimic standard rock-friction experiments, such as "velocity-step" and "slide-hold-reslide" protocols. They test the hypothesis that rock friction as observed in the laboratory is governed by time-independent properties at the grain-grain contact scale. This innovative approach differs from more traditional ones which assume that time-dependent plasticity or chemical bonding at microscopic contacts are the source of the rate-and-state dependence of friction. The granular simulations are consistent with the most successful rate-and-state-dependent friction equations for sliding protocols where those equations accurately describe experiments ("velocity-step" and “slide-hold” protocols). They better match laboratory data for sliding protocols where those equations fail (e.g., the reslides following "slide-hold" protocols). Furthermore, output of the granular simulations allows investigating the source of the rate-and-state-dependent friction-like behavior of the model. The team finds that if the kinetic energy of the gouge particles is suitably normalized by the confining pressure, it produces an estimate of the velocity dependence that is consistent with the simulations and within the ballpark of laboratory data. The researchers continue exploring the granular flow model by comparing it to a wider range of sliding protocols that are not well explained by existing equations (e.g., "slide-hold-reslide" and "normal-stress-step" experiments). They also compare the compaction/dilation of the gouge layers in the simulations to experimental observations; the goal is to evaluate the role of porosity on the gouge sliding behavior.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摩擦在许多涉及社会利益的领域发挥着关键作用,包括交通和制造业。在地球科学中,理解摩擦对于更好地理解与地震和滑坡相关的危害至关重要。材料的摩擦特性已经研究了几个世纪,但其时间依赖性背后的物理和化学仍然不清楚。然而,地震和山体滑坡期间摩擦特性的微小波动会对这些事件的规模和速度产生巨大影响。在诸如构造断层之类的滑动界面上的摩擦通常用所谓的“速率和状态相关摩擦”定律来描述。这些经验定律解释了滑动速度(“速率”)和被称为“状态”的界面的演化特性;后者是滑移历史的一个函数,很难直接观察到。速率-状态框架被广泛用于模拟摩擦滑动。但是,相应的定律不能准确地描述与地震有关的一系列条件的实验室观测结果。在这里,研究小组的目标是更好地了解岩石摩擦特性背后的物理原理。研究人员使用计算机模拟来模拟沿构造断层存在的被称为断层泥的细磨岩石颗粒层的行为。目的是测试岩石摩擦及其时间依赖性是否在晶粒尺度上受晶粒间相互作用的支配。模拟结果受到实验观察的限制:在许多情况下,它们比最成功的速率和状态摩擦定律描述得更好。因此,研究小组逐渐揭示了地震断层行为背后的物理原理。除了具有很强的社会相关性外,该项目还为早期职业科学家提供支持,并为本科生提供培训。为了模拟断层的行为,研究人员采用离散元法模拟。他们使用几何模型和加载条件来模拟标准的岩石摩擦实验,例如“速度-步骤”和“滑动-保持-重新滑动”协议。他们测试了一个假设,即在实验室中观察到的岩石摩擦是由颗粒-颗粒接触尺度上的时间无关特性决定的。这种创新的方法不同于传统的方法,传统的方法认为,时间依赖的可塑性或微观接触的化学键是摩擦的速率和状态依赖的来源。颗粒模拟与滑动协议中最成功的速率和状态相关的摩擦方程一致,这些方程准确地描述了实验(“速度-步进”和“滑动保持”协议)。在这些方程失效的情况下,它们更好地匹配滑动协议的实验室数据(例如,遵循“滑动保持”协议的幻灯片)。此外,颗粒模拟的输出允许研究模型中依赖于速率和状态的类摩擦行为的来源。研究小组发现,如果泥颗粒的动能被围压适当地归一化,它就会产生一个与模拟一致的速度依赖估计,并且在实验室数据的大致范围内。研究人员继续探索颗粒流模型,将其与现有方程无法很好解释的更广泛的滑动协议进行比较(例如,“滑动-保持-重新滑动”和“正常应力步骤”实验)。他们还将模拟中断层泥层的压实/膨胀与实验观察进行了比较;目的是评估孔隙度对断层泥滑动行为的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allan Rubin其他文献
Allan Rubin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allan Rubin', 18)}}的其他基金
Collaborative Research: What Processes Cause State Evolution in Rate and State Friction?
合作研究:什么过程导致速率和状态摩擦的状态演化?
- 批准号:
2024766 - 财政年份:2020
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Catalog-constrained models of tremor and slow slip
颤动和慢滑移的目录约束模型
- 批准号:
1645145 - 财政年份:2017
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
Collaborative Research: Laboratory and Theoretical Investigations of the Micro-Mechanical Origins of Rate and State Friction on Tectonic Faults
合作研究:构造断层上速率和状态摩擦的微机械起源的实验室和理论研究
- 批准号:
1547286 - 财政年份:2016
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
Developing high-resolution tremor catalogs to constrain numerical models of slow slip
开发高分辨率震颤目录来约束慢滑移数值模型
- 批准号:
1344948 - 财政年份:2014
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
Mechanical Erosion of Frictionally Locked Fault Patches Due to Creep: ObservationalEvidence and Modeling
蠕变引起的摩擦锁定断层块的机械侵蚀:观测证据和建模
- 批准号:
1214900 - 财政年份:2012
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
A (mostly) Observational Study of Microearthquakes on a Bimaterial Interface
双材料界面上微地震的(主要)观测研究
- 批准号:
1113579 - 财政年份:2011
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Theoretical earthquake nucleation, with applications to creep fronts, tremor, and slow slip
理论地震成核,及其在蠕变前沿、颤动和慢滑移中的应用
- 批准号:
0911378 - 财政年份:2009
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
An Observational Study of Microearthquakes on a Bimaterial Interface
双材料界面微地震的观测研究
- 批准号:
0710896 - 财政年份:2007
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
Earthquake nucleation on rate and state faults: Theory (mostly) and some observations
速率和状态断层的地震成核:理论(主要)和一些观察
- 批准号:
0538156 - 财政年份:2005
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
Studies of Fault Fabrics and Earthquake Mechanics from the Precise Relative Locations of Microearthquakes
从微地震精确相对位置研究断层组构和地震力学
- 批准号:
0126184 - 财政年份:2002
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
tau轻子衰变与新物理模型唯象研究
- 批准号:11005033
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
新强子态研究
- 批准号:10905053
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高能强子对撞机Higgs衰变到双光子末态的寻找
- 批准号:10975134
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
强子对撞机上新物理信号的多轻子末态研究
- 批准号:10675110
- 批准年份:2006
- 资助金额:36.0 万元
- 项目类别:面上项目
强子对撞物理中的R宇称现象学研究
- 批准号:10575095
- 批准年份:2005
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
9260898 - 财政年份:2013
- 资助金额:
$ 32.78万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
8481857 - 财政年份:2013
- 资助金额:
$ 32.78万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
8645656 - 财政年份:2013
- 资助金额:
$ 32.78万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
9061419 - 财政年份:2013
- 资助金额:
$ 32.78万 - 项目类别:
Mechanisms of Neurotransmitter-gated Ion Channels
神经递质门控离子通道的机制
- 批准号:
8074368 - 财政年份:2003
- 资助金额:
$ 32.78万 - 项目类别:
Mechanisms of Neurotransmitter-gated Ion Channels
神经递质门控离子通道的机制
- 批准号:
7869064 - 财政年份:2003
- 资助金额:
$ 32.78万 - 项目类别:
Mechanisms of Neurotransmitter-gated Ion Channels
神经递质门控离子通道的机制
- 批准号:
7540970 - 财政年份:2003
- 资助金额:
$ 32.78万 - 项目类别:
Mechanisms of Neurotransmitter-gated Ion Channels
神经递质门控离子通道的机制
- 批准号:
7373257 - 财政年份:2003
- 资助金额:
$ 32.78万 - 项目类别:
Mechanisms of Neurotransmitter-gated Ion Channels
神经递质门控离子通道的机制
- 批准号:
7837575 - 财政年份:2003
- 资助金额:
$ 32.78万 - 项目类别:
Mechanisms of Neurotransmitter-gated Ion Channels
神经递质门控离子通道的机制
- 批准号:
7415296 - 财政年份:2001
- 资助金额:
$ 32.78万 - 项目类别: