Ultrafast Magneto-photonic Materials
超快磁光子材料
基本信息
- 批准号:1947070
- 负责人:
- 金额:$ 35.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study the extraordinary way that common optical materials can respond to the electric and magnetic field components of intense light, which are capable of working together to surpass the traditional bounds of electrodynamics. It will focus on a process called magneto-electric (M-E) rectification, which induces a separation of the charges composing ordinary insulators in much the same way that application of an electric field causes a battery-like separation of charges in a capacitor. This process promises to enable the conversion of intense sunlight directly to electrical energy in a novel fashion (that does not require the light to be coherent), but will be investigated here for its potential to advance the field of photonics by mediating fast switching of light with the Lorentz force of light for the first time.This research is expected to launch the field of magneto-photonics by providing ultrafast optical device technology based on magnetic rather than electric interactions of matter with electromagnetic radiation. The novelty of the proposed effort centers on switching a signal-carrying beam on and off on a sub-picosecond timescale with a control beam incident at right angles. Switching of light by light in a right-angle geometry is unprecedented and could lead in a single step to matrix-style signal processing and correlators for pattern recognition in exceptionally compact designs. This research will explore magnetic processes relevant to spin physics, energy conversion, high speed communication and quantum computation through its connections with fundamental topics like angular momentum and parity-time-symmetry in quantum mechanics. It will therefore foster advanced training of graduate students, provide an important pathway for promoting diversity in our workforce, and will emphasize inter-disciplinary research to match up new materials with the demanding objectives of modern photonics. This effort will culminate in ultrafast device technology that exploits the revolutionary properties of magneto-photonic materials and phenomena.Technical DescriptionThis experimental research program will undertake a systematic investigation of magneto-electric rectification to assess its utility for enabling ultrafast switching of light by light in new, compact geometries and to test our theoretical understanding of this process. A novel modulator designed to switch the transmission of a signal beam on or off will be subjected to a control beam propagating at ninety degrees with respect to the first in nonlinear media having large second-order, magneto-electric susceptibilities. Unlike conventional second-order photonic interactions, magneto-electric rectification can theoretically take place in all media, but experiences enhancement in materials with large, off-diagonal, third-order susceptibilities. So samples of two varieties will be compared – ones which are electro-optic (like KDP isomorphs) and ones which are not (like pentacene) – in an effort to verify and understand how this emerging class of magneto-optical interactions could spur photonic device technology in much broader classes of material than ever before. Because of its focus on transient dipole field generation in field-free media, this project will also exploit a sophisticated tilted wavefront technique to show that light can be converted to THz radiation without any external energy source other than the light itself. Since the magneto-electric process is mediated by the Lorentz force of light, this project will also shed light on mechanisms that enhance relativistic dynamics at modest light intensities, far below the customary threshold for relativistic optics at intensities of I~1018 W/cm2.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究普通光学材料能够响应强光的电场和磁场分量的非凡方式,这些分量能够共同工作以超越电动力学的传统界限。它将集中在一个称为磁电(M-E)整流的过程中,该过程引起构成普通绝缘体的电荷分离,其方式与电场的应用导致电容器中的电荷像电池一样分离的方式大致相同。这一过程有望以一种新颖的方式将强烈的阳光直接转化为电能(这不需要光是相干的),但将在这里研究它的潜力,以推进光子学领域的调解快速开关的光与洛伦兹力的第一次。这项研究预计将推出磁场,通过提供基于物质与电磁辐射的磁而不是电相互作用的超快光学器件技术来实现光子学。这项新技术的新奇之处在于,利用直角入射的控制光束,在亚皮秒的时间尺度上开启和关闭信号承载光束。在直角几何中,光与光的切换是前所未有的,并且可以在非常紧凑的设计中一步到位地实现矩阵式信号处理和模式识别。这项研究将探索与自旋物理,能量转换,高速通信和量子计算相关的磁过程,通过其与量子力学中的角动量和宇称时间对称性等基本主题的联系。 因此,它将促进研究生的高级培训,为促进我们劳动力的多样性提供重要途径,并将强调跨学科研究,以使新材料与现代光子学的苛刻目标相匹配。这一努力将最终在超快器件技术,利用磁光子材料和现象的革命性的属性。技术说明这一实验研究计划将进行系统的调查磁电整流,以评估其效用,使超快开关的光由光在新的,紧凑的几何形状,并测试我们的理论理解这一过程。一种新颖的调制器,设计用于开关信号光束的传输,将受到控制光束的影响,该控制光束在具有大的二阶磁电比的非线性介质中相对于第一光束以90度传播。与传统的二阶光子相互作用不同,磁电整流理论上可以在所有介质中发生,但在具有大的、非对角的三阶介电常数的材料中会经历增强。因此,将比较两种样品-一种是电光(如KDP同晶型),另一种不是(如并五苯)-以验证和理解这种新兴的磁光相互作用如何在比以往更广泛的材料类别中刺激光子器件技术。由于其重点是在无场介质中产生瞬态偶极场,该项目还将利用复杂的倾斜波前技术来证明光可以在没有任何外部能源的情况下转换为THz辐射。由于磁电过程是由光的洛伦兹力介导的,因此该项目还将揭示在适度光强度下增强相对论动力学的机制,远低于相对论光学在I~1018 W/cm 2.该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Rand其他文献
Ultraviolet nanophosphors
- DOI:
10.1016/j.jlumin.2006.01.174 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:
- 作者:
Bin Li;Tom Hinklin;Richard Laine;Stephen Rand - 通讯作者:
Stephen Rand
Stephen Rand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Rand', 18)}}的其他基金
US-Europe Planning Visit: Ultrafast Dephasing in Continuous-wave Random Laser Systems
美欧计划访问:连续波随机激光系统中的超快相移
- 批准号:
0531086 - 财政年份:2005
- 资助金额:
$ 35.37万 - 项目类别:
Standard Grant
Inter-American Materials Collaboration (CIAM): Nonlinear Spectroscopy of Optical Ceramics
美洲材料合作组织 (CIAM):光学陶瓷的非线性光谱
- 批准号:
0502715 - 财政年份:2005
- 资助金额:
$ 35.37万 - 项目类别:
Continuing Grant
SGER: Quantum Electronic Properties of Ultraviolet Laser Phosphors
SGER:紫外激光荧光粉的量子电子特性
- 批准号:
9975542 - 财政年份:1999
- 资助金额:
$ 35.37万 - 项目类别:
Standard Grant
相似海外基金
DMREF: Magneto-electro-optically coupled hybrid metamaterial thin film platform for photonic integrated circuits
DMREF:用于光子集成电路的磁电光耦合混合超材料薄膜平台
- 批准号:
2323752 - 财政年份:2023
- 资助金额:
$ 35.37万 - 项目类别:
Standard Grant
Semi-synthetic, magneto-photonic circuit for non-invasive control of cellular function
用于非侵入性控制细胞功能的半合成磁光子电路
- 批准号:
10277517 - 财政年份:2021
- 资助金额:
$ 35.37万 - 项目类别:
Development of magneto-photonic devices for large-scale optical communication systems
大规模光通信系统磁光子器件的开发
- 批准号:
19H02190 - 财政年份:2019
- 资助金额:
$ 35.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Photonic memory using magneto-optical recording
使用磁光记录的光子存储器
- 批准号:
16K06295 - 财政年份:2016
- 资助金额:
$ 35.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monolithic magneto-optical isolators for on-chip photonic integration
用于片上光子集成的单片磁光隔离器
- 批准号:
1607865 - 财政年份:2016
- 资助金额:
$ 35.37万 - 项目类别:
Standard Grant
Enhancement and contral of the magneto-optic effect by the magntic photonic fiber stracture
磁光子光纤结构对磁光效应的增强和控制
- 批准号:
15K13386 - 财政年份:2015
- 资助金额:
$ 35.37万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Magneto-optical photonic crystals consisted of antiferromagnetically coupled films for next generation spatial light modulators
由反铁磁耦合薄膜组成的磁光光子晶体,用于下一代空间光调制器
- 批准号:
23560429 - 财政年份:2011
- 资助金额:
$ 35.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Optical Switches Operating at Ultra-Low Voltages Using Magneto-Optic Photonic Crystals
利用磁光光子晶体在超低电压下工作的光开关的研究
- 批准号:
22656084 - 财政年份:2010
- 资助金额:
$ 35.37万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
STTR Phase I: Development of Materials for Optical Band Gaps in Magneto-Photonic Crystals for Switching and Biosensor Applications
STTR 第一阶段:开发用于开关和生物传感器应用的磁光子晶体光学带隙材料
- 批准号:
0930525 - 财政年份:2009
- 资助金额:
$ 35.37万 - 项目类别:
Standard Grant
Degenerate Bandgaps in Magneto-Photonic Crystals and Magneto-Photonic Crystal Biochemical Sensors
磁光子晶体和磁光子晶体生化传感器中的简并带隙
- 批准号:
0856650 - 财政年份:2009
- 资助金额:
$ 35.37万 - 项目类别:
Standard Grant