Semi-synthetic, magneto-photonic circuit for non-invasive control of cellular function
用于非侵入性控制细胞功能的半合成磁光子电路
基本信息
- 批准号:10277517
- 负责人:
- 金额:$ 202.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2024-09-21
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelBasic ScienceBindingBiologicalBioluminescenceBiophotonicsCatfishCell SurvivalCell physiologyCellsChemicalsChimeric ProteinsComplexDataDevelopmentDiseaseElectromagnetic FieldsElectromagneticsEnzymesGene ExpressionGene OrderGene ProteinsGenesGeneticGenetic TranscriptionGlassGoalsHeterodimerizationHomodimerizationImplantIn VitroInterventionLibrariesLightLuciferasesMagnetismMammalian CellMolecular BiologyMusMutagenesisOperative Surgical ProceduresOpticsOutcomePhotobleachingPhotonsPhototoxicityPhysiologicalProteinsPublic HealthRegulationReporterResearchResolutionRodentSignal PathwaySystemTechnologyTestingTherapeuticTissuesTranscriptional Regulationabsorptionbaseblood glucose regulationclinical applicationdesigndimerdrug developmenthuman diseasein vivoinnovationlight intensitylight scatteringluciferinmillisecondnext generationnovelnovel therapeuticsoptical fiberoptogeneticsphotonicspromoterreconstitutionremote controlscreeningsynthetic biologytherapeutic genetooltranscription factortransmission process
项目摘要
PROJECT SUMMARY/ABSTRACT
Technological advances in molecular biology have led to the development of a variety of innovative tools to
control gene expression. Those tools are crucial for both interrogating complex biological questions and
developing the next generation of therapeutics. Yet, there are two main challenges that remain to be resolved.
One is remote controlling of transcription on demand with the utmost temporal and spatial resolution. The other
is to avoid crosstalk with existing signaling pathways.
In this study, we propose to develop a new genetic tool based on synthetic biology to better control gene
expression within cells. This novel tool is based on rewiring cellular networks and converting energy into
biological action. We intend to harness the power of electromagnetism and biophotonics to control gene
expression. Our goal is to devise multiplex gene arrangements, fusion proteins and transcription factors, that
can be controlled remotely by electromagnetic fields (EMF). This unique, artificial cellular machinery will use
biophotonic principles for activation of specific transcription factors and subsequently switch on gene
transcription with the utmost precision.
In the first Aim we will develop and evolve a genetically encoded biomagnetic switch that can convert EMF to
photons. In parallel, in the second Aim we will develop an orthogonal transcription machinery that interacts with
the biomagnetic switch and controls transcription without interacting with any endogenous signaling pathway.
Finally, in the third Aim we will test the synthetic circuit in vivo, in a relevant animal model.
This magneto-photonic circuit will by-pass the limitations of current chemical, optical, and magnetic approaches
by allowing genetically targeted, non-invasive remote control of gene expression in a highly precise and
physiologically relevant temporal manner. We anticipate that upon completion of the proposed research we will
create an innovative tool that will be immensely beneficial for basic research, drug development and developing
the next generation of synthetic biology-based therapeutics.
项目概要/摘要
分子生物学的技术进步导致了各种创新工具的开发
控制基因表达。这些工具对于询问复杂的生物学问题和
开发下一代疗法。然而,还有两个主要挑战有待解决。
一是以最大的时间和空间分辨率远程控制转录。另一个
是为了避免与现有信号通路的串扰。
在这项研究中,我们建议开发一种基于合成生物学的新遗传工具,以更好地控制基因
细胞内表达。这种新颖的工具基于重新布线蜂窝网络并将能量转换为
生物作用。我们打算利用电磁学和生物光子学的力量来控制基因
表达。我们的目标是设计多重基因排列、融合蛋白和转录因子,
可以通过电磁场(EMF)进行远程控制。这种独特的人造细胞机器将使用
激活特定转录因子并随后打开基因的生物光子原理
以最精确的方式进行转录。
在第一个目标中,我们将开发和进化一种基因编码的生物磁开关,可以将 EMF 转换为
光子。与此同时,在第二个目标中,我们将开发一种正交转录机制,与
生物磁开关并控制转录,而不与任何内源信号通路相互作用。
最后,在第三个目标中,我们将在相关动物模型中测试体内合成电路。
这种磁光子电路将绕过当前化学、光学和磁方法的局限性
通过允许以高度精确和精确的方式对基因表达进行基因靶向、非侵入性远程控制
生理相关的时间方式。我们预计,在完成拟议的研究后,我们将
创建一个对基础研究、药物开发和开发将非常有益的创新工具
下一代基于合成生物学的疗法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Assaf A Gilad其他文献
Cardiac CEST-MRI for tracking stem cell survival and determining the role of CXCL2
- DOI:
10.1186/1532-429x-18-s1-p262 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Lina Alon;Dara Kraitchman;Michael Schär;Angel Cortez;Nirbhay N Yadav;Judy Cook;Peter V Johnston;Rebecca Krimins;Michael T McMahon;Peter van Zijl;Jeff W Bulte;Assaf A Gilad - 通讯作者:
Assaf A Gilad
Assaf A Gilad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Assaf A Gilad', 18)}}的其他基金
Molecular Imaging for Detection of Synthetic Biology Circuits, Oscillators and Toggle Switches in Regenerative Medicine
用于检测再生医学中的合成生物学电路、振荡器和拨动开关的分子成像
- 批准号:
10176612 - 财政年份:2018
- 资助金额:
$ 202.66万 - 项目类别:
Bioengineering a novel electromagnetic perspective gene as a tool for wireless control of excitable cells
生物工程新型电磁透视基因作为无线控制可兴奋细胞的工具
- 批准号:
10200903 - 财政年份:2017
- 资助金额:
$ 202.66万 - 项目类别:
Bioengineering a novel electromagnetic perspective gene as a tool for wireless control of excitable cells
生物工程新型电磁透视基因作为无线控制可兴奋细胞的工具
- 批准号:
9381612 - 财政年份:2017
- 资助金额:
$ 202.66万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8733830 - 财政年份:2012
- 资助金额:
$ 202.66万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8445212 - 财政年份:2012
- 资助金额:
$ 202.66万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8599497 - 财政年份:2012
- 资助金额:
$ 202.66万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8333669 - 财政年份:2012
- 资助金额:
$ 202.66万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8789397 - 财政年份:2012
- 资助金额:
$ 202.66万 - 项目类别:
Imaging of gene delivery in the central nervous system
中枢神经系统基因传递的成像
- 批准号:
7659274 - 财政年份:2009
- 资助金额:
$ 202.66万 - 项目类别:
Imaging of gene delivery in the central nervous system
中枢神经系统基因传递的成像
- 批准号:
7858506 - 财政年份:2009
- 资助金额:
$ 202.66万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 202.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




