COLLABORATIVE RESEARCH: GI CATALYTIC TRACK: Cyberinfrastructure for Intelligent High-Resolution Snow Cover Inference from Cubesat Imagery

合作研究:GI CATALYTIC Track:根据立方体卫星图像进行智能高分辨率积雪推断的网络基础设施

基本信息

  • 批准号:
    1947893
  • 负责人:
  • 金额:
    $ 4.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

The ability to observe the Earth from space at relevant spatial and temporal scales is key to understanding how hydrological and ecological systems will respond to climate change. In particular, high spatial and temporal resolution (meter scale, daily frequency) observations of snow-covered areas in mountain regions are critical as snow is important for water resources, driving the seasonal hydrological regimes of the Western U.S., with significant impacts on ecological communities. Planet Labs, Inc. (Planet) is a promising new source of commercial Cubesat high-resolution imagery that can be used in environmental science, as it has both high spatial (3.0-4.0 m) and temporal (1-2 day) resolution. This project will develop open-source, cloud-based cyberinfrastructure including an automated pipeline for processing, analyzing and interpreting Planet Cubesat image data using a machine learning approach to infer snow cover at meter-scale resolution. All models and data products will be openly available for use and modification by scientific communities. The project will support the training of students, postdocs and other early-career researchers through training events, special interest groups, and incubator programs. Currently, remotely-sensed snow observations with adequate temporal (daily) resolution are either captured at a spatial scale far too large to be relevant to high-resolution hydrology and ecology studies (e.g. MODIS, 500m) or are appropriate in spatial scale (1-10 m) but have inadequate temporal resolution and are cost-prohibitive (e.g. airborne LiDAR). The recent increase of commercial Earth Observation data with high spatiotemporal resolution may bridge the gap between ground-based and low-resolution satellite observation data. This project will focus on using convolutional neural networks-based models to couple ground and airborne-derived snow observations with Planet imagery in three different montane systems in Washington, California, and Colorado. These sites have very good coverage of ground and airborne snow observations at high resolution (3m) collected by the NASA Airborne Snow Observatory (ASO) and SnowEx missions, which will be used in the training and validation of the models. The project will develop advanced cyberinfrastructure using scalable virtual machines, distributed collaborative architecture, reusable computational frameworks, and replicable machine learning workflows to empower Earth scientists to access, process and generate high-resolution snow products from Cubesat data. The project will adopt open-source strategies and ensure that all data, algorithms, and architecture comply with FAIR data principles and reproducibility and will include training materials that promote the adoption of the infrastructure and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从空间在相关的空间和时间尺度上观测地球的能力是了解水文和生态系统如何应对气候变化的关键。特别是,对山区积雪地区的高空间和时间分辨率(米尺度,每日频率)观测至关重要,因为雪对水资源很重要,推动了美国西部的季节性水文制度,对生态群落有重大影响。行星实验室公司(Planet)是一个很有前途的新的立方体卫星商业高分辨率图像来源,可用于环境科学,因为它具有高空间分辨率(3.0-4.0米)和高时间分辨率(1-2天)。该项目将开发基于云的开源网络基础设施,包括一个自动化管道,用于处理、分析和解释Planet Cubesat图像数据,使用机器学习方法以米级分辨率推断积雪。所有模型和数据产品都将开放供科学界使用和修改。该项目将通过培训活动、特殊兴趣小组和孵化器项目支持对学生、博士后和其他早期职业研究人员的培训。目前,具有足够时间(每日)分辨率的遥感雪观测要么是在空间尺度上捕获的,该空间尺度太大而与高分辨率水文学和生态学研究无关(例如,中分辨率成像光谱仪,500米),要么是在空间尺度上(1-10米)合适,但时间分辨率不足,成本高昂(例如,机载激光雷达)。最近增加的具有高时空分辨率的商业地球观测数据可弥补地面观测数据与低分辨率卫星观测数据之间的差距。该项目将侧重于使用基于卷积神经网络的模型,将地面和航空器的雪观测与华盛顿、加州和科罗拉多三个不同山地系统的行星图像相结合。这些站点具有非常好的地面和空中积雪观测覆盖率,这些观测由NASA空中积雪观测站(阿索)和SnowEx任务收集,将用于模型的培训和验证。该项目将使用可扩展的虚拟机、分布式协作架构、可重复使用的计算框架和可复制的机器学习工作流程开发先进的网络基础设施,使地球科学家能够从Cubesat数据中访问、处理和生成高分辨率的雪产品。该项目将采用开源策略,确保所有数据、算法和架构符合FAIR数据原则和可重复性,并将包括促进基础设施和工具采用的培训材料。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GeoFairy2: A Cross-Institution Mobile Gateway to Location-Linked Data for In-Situ Decision Making
  • DOI:
    10.3390/ijgi10010001
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziheng Sun;L. Di;Sreten Cvetojevic;Zhiqi Yu
  • 通讯作者:
    Ziheng Sun;L. Di;Sreten Cvetojevic;Zhiqi Yu
Using Geoweaver to Make Snow Mapping Workflow FAIR
使用 Geoweaver 使雪地绘图工作流程公平
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ziheng Sun其他文献

Agro-geoinformatics Data Sources and Sourcing
农业地理信息学数据源和采购
Using machine learning and trapezoidal model to derive All-weather ET from Remote sensing Images and Meteorological Data
利用机器学习和梯形模型从遥感图像和气象数据中导出全天候ET
Two-band superconductivity in intercalated rhombohedral ZrNCl
插层菱面体 ZrNCl 中的双带超导性
  • DOI:
    10.1016/j.supcon.2025.100169
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Zhenkai Xie;Ziheng Sun;Xinmin Wang;Junying Shen;Liyuan Zhang
  • 通讯作者:
    Liyuan Zhang
EFD: A New Benchmark for Load Identification and Energy Disaggregation
EFD:负载识别和能量分解的新基准
Crop-CASMA - A Web GIS Tool for Cropland Soil Moisture Monitoring and Assessment Based on SMAP Data
Crop-CASMA - 基于 SMAP 数据的农田土壤湿度监测和评估的 Web GIS 工具

Ziheng Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Canadian Association of Gastroenterology (CAG) RESEARCH TOPICS IN GI DISEASE XXII
加拿大胃肠病学协会 (CAG) 胃肠道疾病研究主题 XXII
  • 批准号:
    468079
  • 财政年份:
    2022
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Miscellaneous Programs
SBIR Phase II: Non-Invasive Sampling and Analysis of the Human Gasstrointestinal (GI) Tract to Advance Inflammatory Bowel Disease Research
SBIR 第二阶段:人类胃肠道的非侵入性采样和分析,以推进炎症性肠病研究
  • 批准号:
    2126329
  • 财政年份:
    2021
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Cooperative Agreement
COLLABORATIVE RESEARCH: GI CATALYTIC TRACK: Cyberinfrastructure for Intelligent High-Resolution Snow Cover Inference from Cubesat Imagery
合作研究:GI CATALYTIC Track:根据立方体卫星图像进行智能高分辨率积雪推断的网络基础设施
  • 批准号:
    1947875
  • 财政年份:
    2020
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Continuing Grant
SBIR Phase I: CapScan: Non-Invasive Sampling and Analysis of the Human GI Tract to Advance Inflammatory Bowel Disease Research
SBIR 第一阶段:CapScan:人体胃肠道的非侵入性采样和分析,以推进炎症性肠病研究
  • 批准号:
    1936687
  • 财政年份:
    2020
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Standard Grant
Canadian Association of Gastroenterology (CAG) RESEARCH TOPICS IN GI DISEASE XIX
加拿大胃肠病学协会 (CAG) 胃肠道疾病研究主题 XIX
  • 批准号:
    411973
  • 财政年份:
    2019
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Miscellaneous Programs
Canadian Association of Gastroenterology (CAG) RESEARCH TOPICS IN GI DISEASE XVIII
加拿大胃肠病学协会 (CAG) 胃肠道疾病研究主题 XVIII
  • 批准号:
    391959
  • 财政年份:
    2018
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Miscellaneous Programs
Doctoral Dissertation Research in Economics: The Impact of the Post-9/11 GI Bill on educational decisions and outcomes
经济学博士论文研究:9/11 后《退伍军人权利法案》对教育决策和结果的影响
  • 批准号:
    1427264
  • 财政年份:
    2014
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Standard Grant
Canadian Association of Gastroenterology (CAG) RESEARCH TOPICS IN GI DISEASE XI
加拿大胃肠病学协会 (CAG) 胃肠道疾病研究主题 XI
  • 批准号:
    235432
  • 财政年份:
    2011
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Miscellaneous Programs
Translational Research in GI Cancer
胃肠道癌症的转化研究
  • 批准号:
    8540123
  • 财政年份:
    2010
  • 资助金额:
    $ 4.72万
  • 项目类别:
Translational Research in GI Cancer
胃肠道癌症的转化研究
  • 批准号:
    8396640
  • 财政年份:
    2010
  • 资助金额:
    $ 4.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了