COLLABORATIVE RESEARCH: GI CATALYTIC TRACK: Cyberinfrastructure for Intelligent High-Resolution Snow Cover Inference from Cubesat Imagery
合作研究:GI CATALYTIC Track:根据立方体卫星图像进行智能高分辨率积雪推断的网络基础设施
基本信息
- 批准号:1947875
- 负责人:
- 金额:$ 55.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to observe the Earth from space at relevant spatial and temporal scales is key to understanding how hydrological and ecological systems will respond to climate change. In particular, high spatial and temporal resolution (meter scale, daily frequency) observations of snow-covered areas in mountain regions are critical as snow is important for water resources, driving the seasonal hydrological regimes of the Western U.S., with significant impacts on ecological communities. Planet Labs, Inc. (Planet) is a promising new source of commercial Cubesat high-resolution imagery that can be used in environmental science, as it has both high spatial (3.0-4.0 m) and temporal (1-2 day) resolution. This project will develop open-source, cloud-based cyberinfrastructure including an automated pipeline for processing, analyzing and interpreting Planet Cubesat image data using a machine learning approach to infer snow cover at meter-scale resolution. All models and data products will be openly available for use and modification by scientific communities. The project will support the training of students, postdocs and other early-career researchers through training events, special interest groups, and incubator programs. Currently, remotely-sensed snow observations with adequate temporal (daily) resolution are either captured at a spatial scale far too large to be relevant to high-resolution hydrology and ecology studies (e.g. MODIS, 500m) or are appropriate in spatial scale (1-10 m) but have inadequate temporal resolution and are cost-prohibitive (e.g. airborne LiDAR). The recent increase of commercial Earth Observation data with high spatiotemporal resolution may bridge the gap between ground-based and low-resolution satellite observation data. This project will focus on using convolutional neural networks-based models to couple ground and airborne-derived snow observations with Planet imagery in three different montane systems in Washington, California, and Colorado. These sites have very good coverage of ground and airborne snow observations at high resolution (3m) collected by the NASA Airborne Snow Observatory (ASO) and SnowEx missions, which will be used in the training and validation of the models. The project will develop advanced cyberinfrastructure using scalable virtual machines, distributed collaborative architecture, reusable computational frameworks, and replicable machine learning workflows to empower Earth scientists to access, process and generate high-resolution snow products from Cubesat data. The project will adopt open-source strategies and ensure that all data, algorithms, and architecture comply with FAIR data principles and reproducibility and will include training materials that promote the adoption of the infrastructure and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在相关的空间和时间尺度上从太空观察地球的能力是了解水文和生态系统将如何应对气候变化的关键。特别是,对山区积雪地区进行高空间和时间分辨率(米尺度、每日频率)观测是至关重要的,因为雪对水资源很重要,推动了美国西部的季节性水文制度,对生态社区产生了重大影响。Planet Labs,Inc.(PLANET)是一种很有前途的商业立方体高分辨率图像的新来源,可用于环境科学,因为它具有高空间(3.0-4.0米)和时间(1-2天)分辨率。该项目将开发基于云的开源网络基础设施,包括一条处理、分析和解释立方体行星图像数据的自动化管道,使用机器学习方法推断米级分辨率的积雪。所有模型和数据产品都将开放供科学界使用和修改。该项目将通过培训活动、特殊兴趣小组和孵化器计划支持对学生、博士后和其他职业早期研究人员的培训。目前,具有足够的时间(每日)分辨率的遥感积雪观测要么是在太大的空间尺度上捕获的,与高分辨率的水文学和生态学研究不相关(例如,MODIS,500米),要么是在空间尺度上合适(1-10米),但时间分辨率不足且成本高昂(例如机载激光雷达)。最近增加的高时空分辨率的商业地球观测数据可能会弥合地面观测数据和低分辨率卫星观测数据之间的差距。该项目将专注于使用基于卷积神经网络的模型,将地面和空中的降雪观测与位于华盛顿、加利福尼亚州和科罗拉多州的三个不同山地系统中的行星图像相结合。这些站点对NASA机载积雪观测站(ASO)和SnowEx任务收集的高分辨率(3米)的地面和空中降雪观测进行了非常好的覆盖,这些观测将用于模型的培训和验证。该项目将使用可扩展的虚拟机、分布式协作架构、可重复使用的计算框架和可复制的机器学习工作流来开发先进的网络基础设施,以使地球科学家能够访问、处理和生成来自立方体卫星数据的高分辨率雪花产品。该项目将采用开源战略,确保所有数据、算法和架构符合公平数据原则和可重复性,并将包括促进采用基础设施和工具的培训材料。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Resolution Snow-Covered Area Mapping in Forested Mountain Ecosystems Using PlanetScope Imagery
- DOI:10.3390/rs14143409
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Aji John;A. Cannistra;Kehan Yang;Amanda Tan;D. Shean;J. R. Lambers;N. Cristea
- 通讯作者:Aji John;A. Cannistra;Kehan Yang;Amanda Tan;D. Shean;J. R. Lambers;N. Cristea
High-resolution CubeSat imagery and machine learning for detailed snow-covered area
- DOI:10.1016/j.rse.2021.112399
- 发表时间:2021-06
- 期刊:
- 影响因子:13.5
- 作者:A. Cannistra;D. Shean;N. Cristea
- 通讯作者:A. Cannistra;D. Shean;N. Cristea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicoleta Cristea其他文献
A review of Earth Artificial Intelligence
对地球人工智能的回顾
- DOI:
10.1016/j.cageo.2022.105034 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:4.400
- 作者:
Ziheng Sun;Laura Sandoval;Robert Crystal-Ornelas;S. Mostafa Mousavi;Jinbo Wang;Cindy Lin;Nicoleta Cristea;Daniel Tong;Wendy Hawley Carande;Xiaogang Ma;Yuhan Rao;James A. Bednar;Amanda Tan;Jianwu Wang;Sanjay Purushotham;Thomas E. Gill;Julien Chastang;Daniel Howard;Benjamin Holt;Chandana Gangodagamage;Aji John - 通讯作者:
Aji John
Open-source models for development of data and metadata standards
- DOI:
10.1016/j.patter.2025.101316 - 发表时间:
2025-07-11 - 期刊:
- 影响因子:7.400
- 作者:
Ariel Rokem;Vani Mandava;Nicoleta Cristea;Anshul Tambay;Kristofer Bouchard;Carolina Berys-Gonzalez;Andy Connolly - 通讯作者:
Andy Connolly
Nicoleta Cristea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicoleta Cristea', 18)}}的其他基金
CyberTraining: Implementation: Medium: Machine Learning Training and Curriculum Development for Earth Science Studies
网络培训:实施:媒介:地球科学研究的机器学习培训和课程开发
- 批准号:
2117834 - 财政年份:2021
- 资助金额:
$ 55.25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Canadian Association of Gastroenterology (CAG) RESEARCH TOPICS IN GI DISEASE XXII
加拿大胃肠病学协会 (CAG) 胃肠道疾病研究主题 XXII
- 批准号:
468079 - 财政年份:2022
- 资助金额:
$ 55.25万 - 项目类别:
Miscellaneous Programs
SBIR Phase II: Non-Invasive Sampling and Analysis of the Human Gasstrointestinal (GI) Tract to Advance Inflammatory Bowel Disease Research
SBIR 第二阶段:人类胃肠道的非侵入性采样和分析,以推进炎症性肠病研究
- 批准号:
2126329 - 财政年份:2021
- 资助金额:
$ 55.25万 - 项目类别:
Cooperative Agreement
COLLABORATIVE RESEARCH: GI CATALYTIC TRACK: Cyberinfrastructure for Intelligent High-Resolution Snow Cover Inference from Cubesat Imagery
合作研究:GI CATALYTIC Track:根据立方体卫星图像进行智能高分辨率积雪推断的网络基础设施
- 批准号:
1947893 - 财政年份:2020
- 资助金额:
$ 55.25万 - 项目类别:
Continuing Grant
SBIR Phase I: CapScan: Non-Invasive Sampling and Analysis of the Human GI Tract to Advance Inflammatory Bowel Disease Research
SBIR 第一阶段:CapScan:人体胃肠道的非侵入性采样和分析,以推进炎症性肠病研究
- 批准号:
1936687 - 财政年份:2020
- 资助金额:
$ 55.25万 - 项目类别:
Standard Grant
Canadian Association of Gastroenterology (CAG) RESEARCH TOPICS IN GI DISEASE XIX
加拿大胃肠病学协会 (CAG) 胃肠道疾病研究主题 XIX
- 批准号:
411973 - 财政年份:2019
- 资助金额:
$ 55.25万 - 项目类别:
Miscellaneous Programs
Canadian Association of Gastroenterology (CAG) RESEARCH TOPICS IN GI DISEASE XVIII
加拿大胃肠病学协会 (CAG) 胃肠道疾病研究主题 XVIII
- 批准号:
391959 - 财政年份:2018
- 资助金额:
$ 55.25万 - 项目类别:
Miscellaneous Programs
Doctoral Dissertation Research in Economics: The Impact of the Post-9/11 GI Bill on educational decisions and outcomes
经济学博士论文研究:9/11 后《退伍军人权利法案》对教育决策和结果的影响
- 批准号:
1427264 - 财政年份:2014
- 资助金额:
$ 55.25万 - 项目类别:
Standard Grant
Canadian Association of Gastroenterology (CAG) RESEARCH TOPICS IN GI DISEASE XI
加拿大胃肠病学协会 (CAG) 胃肠道疾病研究主题 XI
- 批准号:
235432 - 财政年份:2011
- 资助金额:
$ 55.25万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




