CRII: SaTC: RUI: A Cross-Verification Approach for Identifying Tampered Audio

CRII:SaTC:RUI:识别篡改音频的交叉验证方法

基本信息

  • 批准号:
    1948531
  • 负责人:
  • 金额:
    $ 17.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Recent advances in technology have made it possible to create fake videos of celebrities doing or saying things they did not do or say. There is concern that this technology may be used to influence elections by defaming candidates or to instigate civil unrest through false statements by public officials. This project focuses on protecting world leaders from such fake impersonations. It approaches the problem from a history-centric perspective by asking the question, “Is this video a historically verifiable event?” In the same way that a historian tests a historical claim by cross-checking against other primary sources, we can test the authenticity of an audiovisual recording by cross-checking against other primary sources of audiovisual information. This project develops such a cross-verification approach for identifying fake or tampered audio content. The award will support undergraduate research at a highly diverse liberal arts college.This project investigates audio cross-verification in two scenarios. In the first scenario, the goal is to cross-verify a query with a trusted source recording, which is assumed to be reliable. In order to identify tampering via insertion, deletion, or modification, the alignment between the query and source recording can be computed using dynamic time warping (DTW). The key contribution in this scenario is developing an understanding of how to incorporate DTW into an end-to-end learning system using an appropriate smooth relaxation of DTW during training. In the second scenario, the goal is to cross-verify a query with untrusted source recordings, which may themselves be tampered. The key contribution in the second scenario is to extend existing alignment techniques to jointly align a collection of recordings in the presence of malicious tampering, and to reconstruct the audio ground truth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的技术进步使得制作名人做或说他们没有做或说的事情的假视频成为可能。有人担心,这项技术可能会被用来通过诽谤候选人来影响选举,或者通过公职人员的虚假陈述来煽动内乱。这个项目的重点是保护世界领导人免受这种虚假模仿。它从以历史为中心的角度来处理这个问题,提出了这样一个问题:“这个视频是一个可以从历史上证实的事件吗?”正如历史学家通过与其他主要来源的交叉核对来检验历史主张一样,我们也可以通过与其他主要视听信息来源的交叉核对来检验视听记录的真实性。该项目开发了这样一种交叉验证方法,用于识别虚假或篡改的音频内容。该奖项将支持一所高度多样化的文理学院的本科生研究。这个项目调查了两种情况下的音频交叉验证。在第一个场景中,目标是交叉验证具有可信来源记录的查询,该记录被认为是可靠的。为了识别通过插入、删除或修改进行的篡改,可以使用动态时间规整(DTW)来计算查询和源记录之间的对准。在这一方案中的关键贡献是发展了对如何在培训期间使用适当的平稳放松DTW将DTW纳入端到端学习系统的理解。在第二种情况下,目标是交叉验证具有不可信来源记录的查询,这些记录本身可能被篡改。在第二个场景中的关键贡献是扩展现有的对齐技术,以在存在恶意篡改的情况下联合对齐录音集合,并重建音频地面真实。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Audio Cross Verification Using Dual Alignment Likelihood Ratio Test
A Study of Parallelizable Alternatives to Dynamic Time Warping for Aligning Long Sequences
用于对齐长序列的动态时间扭曲的可并行替代方案的研究
  • DOI:
    10.1109/taslp.2022.3180673
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang, Daniel;Shaw, Thaxter;Tsai, Timothy
  • 通讯作者:
    Tsai, Timothy
Segmental Dtw: A Parallelizable Alternative to Dynamic Time Warping
Parameter-Free Ordered Partial Match Alignment with Hidden State Time Warping
  • DOI:
    10.3390/app12083783
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chang, Claire;Shaw, Thaxter;Tsai, Timothy J.
  • 通讯作者:
    Tsai, Timothy J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Tsai其他文献

Towards Precision-Aware Fault Tolerance Approaches for Mixed-Precision Applications
面向混合精度应用的精度感知容错方法
An Analytical Model for Hardened Latch Selection and Exploration
硬化闩锁选择和探索的分析模型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael B. Sullivan;B. Zimmer;S. Hari;Timothy Tsai;S. Keckler
  • 通讯作者:
    S. Keckler
Suraksha: A Framework to Analyze the Safety Implications of Perception Design Choices in AVs
Suraksha:分析自动驾驶汽车感知设计选择的安全影响的框架
Towards analytically evaluating the error resilience of GPU Programs
分析评估 GPU 程序的错误恢复能力
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abdul Rehman Anwer;Guanpeng Li;K. Pattabiraman;Siva Kumar;Sastry Hari;Michael B. Sullivan;Timothy Tsai
  • 通讯作者:
    Timothy Tsai
Can ultrasound be used as the primary imaging in children with suspected Crohn disease?
超声可以作为疑似克罗恩病儿童的主要影像学检查吗?
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Timothy Tsai;M. Marine;M. Wanner;M. Cooper;S. Steiner;Fangqian Ouyang;S. G. Jennings;Boaz W Karmazyn;Boaz W Karmazyn
  • 通讯作者:
    Boaz W Karmazyn

Timothy Tsai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Tsai', 18)}}的其他基金

CAREER: Ordered Alignment Methods for Complex, High-Dimensional Data
职业:复杂、高维数据的有序对齐方法
  • 批准号:
    2144050
  • 财政年份:
    2022
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: SaTC: RUI: Understanding and Collectively Mitigating Harms from Deepfake Imagery
CRII:SaTC:RUI:理解并共同减轻 Deepfake 图像的危害
  • 批准号:
    2348326
  • 财政年份:
    2024
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
CRII: SaTC: RUI: An Intelligent Data-Driven Framework to Achieve Proactive Cybersecurity
CRII:SaTC:RUI:实现主动网络安全的智能数据驱动框架
  • 批准号:
    2246220
  • 财政年份:
    2023
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
CRII: SaTC: RUI: When Logic Locking Meets Hardware Trojan Mitigation and Fault Tolerance
CRII:SaTC:RUI:当逻辑锁定遇到硬件木马缓解和容错时
  • 批准号:
    2245247
  • 财政年份:
    2023
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
CRII: SaTC: RUI: Understanding and Addressing the Security and Privacy Needs of At-Risk Populations
CRII:SaTC:RUI:理解和解决高危人群的安全和隐私需求
  • 批准号:
    2334061
  • 财政年份:
    2023
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: RUI: Applied Cryptographic Protocols with Provably-Secure Foundations
协作研究:SaTC:核心:中:RUI:具有可证明安全基础的应用密码协议
  • 批准号:
    2149766
  • 财政年份:
    2022
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
CRII: SaTC: RUI: Towards Trustworthy and Accountable IoT Data Marketplaces
CRII:SaTC:RUI:迈向值得信赖和负责任的物联网数据市场
  • 批准号:
    2153464
  • 财政年份:
    2022
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: RUI: Improving Performance of Standoff Iris Recognition Systems Using Deep Learning Frameworks
SaTC:核心:小型:RUI:使用深度学习框架提高防区外虹膜识别系统的性能
  • 批准号:
    2100483
  • 财政年份:
    2020
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
CRII: SaTC: RUI: Understanding and Addressing the Security and Privacy Needs of At-Risk Populations
CRII:SaTC:RUI:理解和解决高危人群的安全和隐私需求
  • 批准号:
    1948344
  • 财政年份:
    2020
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: RUI: New Approaches for Large Scale Secure Computation
SaTC:核心:媒介:协作:RUI:大规模安全计算的新方法
  • 批准号:
    1955319
  • 财政年份:
    2020
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Interagency Agreement
SaTC: CORE: Small: RUI: Improving Performance of Standoff Iris Recognition Systems Using Deep Learning Frameworks
SaTC:核心:小型:RUI:使用深度学习框架提高防区外虹膜识别系统的性能
  • 批准号:
    1909276
  • 财政年份:
    2019
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了