Using New Longitudinal Linked Data to Investigate the Determinants of Educational Attainment and Achievement
使用新的纵向关联数据调查教育程度和成就的决定因素
基本信息
- 批准号:1948943
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In spite of the policy relevance of what determines educational attainment and achievement, economists do not have a good understanding of the issue even though there are several studies on the subject. This research will study the determinants of educational attainment and achievement, as measured by scores on standardized tests for children/youth in grades 6-12 using newly available administrative test score and survey data. The study is based on a nationwide standardized tests to children in all public schools as well as surveys of special students, teacher, principal and parents in a random sample of schools. These rich data provide opportunities to analyze how school quality, teacher quality and family characteristics affect student enrollment and performance in a way that learning is a cumulative process across grades. The researchers will also use the data to study how a program that pays subsidies to children to attend school affects child working behaviors, schooling attainment and performance. The research will also study how school quality, differences in curricula, and distances from home affect parents’ willingness to pay for education; it will also analyze how willingness to pay for their children’s education is influenced by family background. The results of this research can inform educational policies in the US and many other countries. The research project will also help establish the global leader in educational outcomes research.Despite several studies, researchers do not have a good understanding of the determinants of educational attainment and achievement, especially at the K-12 level. This research will contribute the literature on the determinants of K-12 education. Specifically, this research aims at: (i) estimating value-added models of test score dynamics to study how school quality and family inputs affect student performance and to examine how cash transfer a program affects beneficiaries and nonbeneficiaries through peer effects; (ii) develop and estimate a dynamic model of the determinants of student enrollment, achievement and grade progression that incorporates failure, grade retention and dropout; (iii) estimate the demand for different types of schools, accounting for individual-specific choice sets (based on geographic location), and analyze how demand depends on school quality, distances to schools, family background, subsidy status and local labor market conditions that affects returns to education and the demand for child labor; (iv) develop and estimate a discrete choice dynamic programming (DCDP) model of student enrollment, study effort, drop-out, and working decisions and use the model to study the effect of varying income transfer incentive payments, modifying school quality and increasing schooling access. (v) Finally, the research develops and estimate a strategic model of student effort choices within classrooms to study how initial ability distribution influences effort choices and test score outcomes. The results of this research will provide important inputs into policies to improve education outcomes, increase human capital formation, and increase long-term economic growth. The research results could also help establish the US as the global leader in research on educational outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管决定教育程度和成就的因素具有政策相关性,但经济学家对这一问题并没有很好的理解,尽管对这一问题有几项研究。 这项研究将研究受教育程度和成绩的决定因素,这些决定因素是利用新获得的行政考试分数和调查数据,通过6-12年级儿童/青年标准化考试的分数来衡量的。 这项研究是基于对所有公立学校儿童的全国标准化测试以及对随机抽样学校的特殊学生、教师、校长和家长的调查。这些丰富的数据提供了机会,分析学校质量,教师质量和家庭特征如何影响学生的入学率和表现,学习是一个跨年级的累积过程。 研究人员还将利用这些数据来研究一个为儿童上学提供补贴的项目如何影响儿童的工作行为、学业成就和表现。 研究还将研究学校质量、课程差异和离家远近如何影响父母的教育支付意愿;还将分析家庭背景如何影响子女的教育支付意愿。 这项研究的结果可以为美国和许多其他国家的教育政策提供信息。该研究项目还将有助于建立教育成果研究的全球领导者。尽管有几项研究,研究人员没有很好地了解教育程度和成就的决定因素,特别是在K-12水平。 本研究将有助于文献的K-12教育的决定因素。 具体而言,本研究的目的是:(一)估计增值模型的考试成绩动态研究学校质量和家庭投入如何影响学生的表现,并检查现金转移计划如何影响受益人和非受益人通过同侪效应;(二)开发和估计的动态模型的决定因素的学生入学,成绩和年级的进展,包括失败,年级保持和辍学;(iii)估计对不同类型学校的需求,并考虑到个别学校的选择(基于地理位置),并分析需求如何取决于学校质量、学校距离、家庭背景、补贴状况和影响教育回报和童工需求的当地劳动力市场状况;(iv)发展和估计学生入学、学习努力、辍学和工作决定的离散选择动态规划模型,并使用该模型研究不同收入转移奖励金的影响,提高学校质量,增加入学机会。(v)最后,本研究发展并评估了一个学生在课堂上努力选择的策略模型,以研究初始能力分布如何影响努力选择和考试成绩结果。 这项研究的结果将为改善教育成果、增加人力资本形成和促进长期经济增长的政策提供重要投入。 该研究成果还有助于确立美国在教育成果研究方面的全球领导地位。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petra Todd其他文献
Implementing Nonparametric and Semiparametric Estimators, in Handbook of Econometrics
《计量经济学手册》中的《实现非参数和半参数估计量》
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Hidehiko Ichimura;Petra Todd - 通讯作者:
Petra Todd
State Capacity and Economic Development: a Network Approach * and Participants at the Stockholm School of Economics/site Conference on Institutional Challenges in Emerging Economies for Valuable Suggestions. Acemoglu Gratefully Acknowledges Financial Support from Aro Muri
国家能力和经济发展:网络方法*以及斯德哥尔摩经济学院/新兴经济体制度挑战现场会议的与会者提出宝贵建议。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
D. Acemoglu;Camilo García;James A. Robinson;Maria Angelica Bautista;Flavio Cunha;Frank Ditraglia;Elena Paltseva;P. Restrepo;Xun Tang;Petra Todd;Ken Wolpin - 通讯作者:
Ken Wolpin
Petra Todd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petra Todd', 18)}}的其他基金
Estimating a Coordination Game in the Classroom: Evaluating the Role of Student and Teacher Performance Incentives
评估课堂协调博弈:评估学生和教师表现激励的作用
- 批准号:
1227364 - 财政年份:2012
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Regulating the Selection of Products under Investment Accounts Pension System: A Study of the Chilean Experience
规范投资账户养老金制度产品选择:智利经验研究
- 批准号:
0922405 - 财政年份:2009
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Disparate Treatment: Theories and Evidence
差别待遇:理论和证据
- 批准号:
0422863 - 财政年份:2004
- 资助金额:
$ 41.25万 - 项目类别:
Continuing grant
Collaborative Research: Making Semiparametric Methods Operational: Bridging the Gap between Theory and Application
协作研究:使半参数方法可操作:弥合理论与应用之间的差距
- 批准号:
9813492 - 财政年份:1998
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
相似海外基金
The significance of new onset anxiety on health outcomes among women with cardiovascular disease: A Canadian Longitudinal Study of Aging cohort study
新发焦虑对患有心血管疾病的女性健康结果的重要性:加拿大老龄化纵向研究队列研究
- 批准号:
491767 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Operating Grants
Disaggregated Earnings Trajectories in the U.S. Labor Market: New Evidence from Linked Longitudinal Data
美国劳动力市场的分类收入轨迹:关联纵向数据的新证据
- 批准号:
2241738 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Mechanisms of New-Onset Autoimmunity/Longitudinal Immune Systems Analysis (MONA-LISA)
新发自身免疫/纵向免疫系统分析(MONA-LISA)的机制
- 批准号:
10655219 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
UAS-CLEAR: A new nationally representative longitudinal study of caregiving experiences and well-being across the lifecourse
UAS-CLEAR:一项新的全国代表性纵向研究,涉及整个生命过程中的护理体验和福祉
- 批准号:
10729032 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Some new models and methods for complex longitudinal and survival data
复杂纵向和生存数据的一些新模型和方法
- 批准号:
RGPIN-2022-03574 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Discovery Grants Program - Individual
Investigation of a new sequential multiple hit model to examine risk and resilience in a prospective longitudinal cohort of children in Ghana
研究一种新的连续多重打击模型,以检查加纳儿童前瞻性纵向队列的风险和复原力
- 批准号:
10373248 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Development of new methods for the joint modeling of longitudinal and survival data with applications in finance and insurance
开发纵向数据和生存数据联合建模的新方法及其在金融和保险中的应用
- 批准号:
557209-2020 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Alliance Grants
New methods for predictive models for univariate and multivariate longitudinal response data
单变量和多变量纵向响应数据预测模型的新方法
- 批准号:
RGPIN-2020-04382 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Discovery Grants Program - Individual
Trajectories of Externalizing Behaviour Problems and New Parents' Distress and Harsh Parenting: A Genetically-Informed, Prospective Longitudinal Study
外化行为问题、新父母的痛苦和严厉养育的轨迹:一项基于遗传学的前瞻性纵向研究
- 批准号:
462240 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Operating Grants
Identifying host molecular endotypes associated with diverse COVID-19 outcomes and new variants in a longitudinal multiomics cohort study of 1000 patients
在 1000 名患者的纵向多组学队列研究中识别与不同 COVID-19 结果和新变异相关的宿主分子内型
- 批准号:
448855 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Operating Grants