Strain Analysis by Nano-Beam Electron Diffraction using convergent electron nanoprobes

使用会聚电子纳米探针进行纳米束电子衍射应变分析

基本信息

  • 批准号:
    240620893
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2013
  • 资助国家:
    德国
  • 起止时间:
    2012-12-31 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The measurement of strain fields in semiconductor crystals is a prerequisite for understanding physical processes in novel GeSi/Si or (Al)GaN/sapphire based heterostructures. This proposal firstly deals with the strain characterization in GeSi/Si islands for a basic understanding of Ge growth on Si. Secondly, strain fields and local Ge composition in GeSi-MOSFETs, being the basic module of high-performance computer processors, are to be measured as electronic properties drastically depend on the strain distribution. Thirdly, GaN/sapphire pseudosubstrates will be investigated with respect to strain since the efficiency of stress reduction in this layer highly determines efficiency and growth of subsequent InGaN/GaN LED active layers.In order to access these strain fields reliably, a scanning transmission electron microscopy (STEM) method for strain measurement is to be developed which exploits the positions of diffracted beams. In particular, a STEM probe is scanned over the specimen while a convergent beam electron diffraction (CBED) pattern is acquired at each scan point. With dedicated algorithms the disc-shaped CBED reflections can be detected accurately, leading to precisions of 7x10-4. To reduce the amount of experimental data drastically, these algorithms are to be implemented in a software for controlling the FEI Titan microscope used, so as to perform in-situ CBED pattern processing while the STEM probe is scanning. This not only enables 2D strain mapping but also provides the strain result immediately after data acquisition. One main prerequisite to exploit the full capability of the method for 2D mapping as to the spatial resolution of 0.5nm already achieved before is a drastic acceleration of CBED pattern acquisition which is not possible with conventional cameras. Therefore, test, modification and final installation of a delay-line detector are planned at the beginning of the project.To study strain fields of large extensions in the micron range, a STEM-precession method will be developed experimentally and in simulations. In precession mode, the incidence of the STEM probe is rotating on a cone while the resulting shift of the diffraction pattern is compensated for. In this way, strong variations of CBED intensities can be eliminated. In addition, the high strain sensitivity of high order reflections can be exploited as they appear brighter.Furthermore, distortions of the diffraction pattern due to post-magnifying lenses are to be measured and accounted for in strain measurements. This is important for the subsequent determination of the full strain tensor including shear.Finally, this technique is to be combined with the so-called Z-contrast signal, being sensitive to the chemical composition and to strain of the specimen. Consequently, the simultaneous measurement of both strain and Z-contrast will improve the precision of composition measurements since strain- and composition-induced Z-contrast variations can be separated.
半导体晶体中应变场的测量是理解新型GeSi/Si或(Al)GaN/蓝宝石异质结物理过程的前提。这一建议首先讨论了GeSi/Si岛的应变特性,以便对Ge在Si上的生长有一个基本的了解。其次,作为高性能计算机处理器的基本模块,GeSI-MOSFET中的应变场和局域Ge组分将被测量,因为电学性质在很大程度上取决于应变分布。第三,由于GaN/蓝宝石伪衬底的应力降低效率在很大程度上决定了后续InGaN/GaN LED有源层的生长和效率,因此我们将从应变的角度研究GaN/蓝宝石伪衬底的应变。为了可靠地获取这些应变场,开发了一种利用衍射束位置的扫描透射式电子显微镜(STEM)应变测量方法。具体地说,在每个扫描点获得会聚束电子衍射(CBED)图案的同时,在样品上扫描STEM探针。使用专门的算法,可以准确地检测到盘状CBED反射,精度达到7x10-4。为了大大减少实验数据量,这些算法将被实现在用于控制所使用的FEI Titan显微镜的软件中,以便在STEM探针扫描的同时进行原位CBED图形处理。这不仅可以实现2D应变映射,还可以在数据采集后立即提供应变结果。对于以前已经达到的0.5 nm的空间分辨率,充分利用该方法的2D映射能力的一个主要前提是CBED图案采集的急剧加速,这是传统相机不可能实现的。为了研究微米范围内的大范围应变场,将在实验和模拟中开发一种STEM-进动方法。在进动模式下,STEM探头的入射在锥体上旋转,同时所产生的衍射图的偏移被补偿。通过这种方式,可以消除CBED强度的强烈变化。此外,高阶反射的高应变敏感性可以被利用,因为它们看起来更亮。此外,由于后放大透镜引起的衍射图案的失真将被测量并在应变测量中被考虑在内。这对于随后包括剪切在内的全应变张量的测定是很重要的。最后,这项技术将与所谓的Z对比信号相结合,对样品的化学成分和应变敏感。因此,应变和Z衬度的同时测量将提高成分测量的精度,因为应变和成分引起的Z衬度变化可以分开。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mazes and meso-islands: Impact of Ag preadsorption on Ge growth on Si(111)
迷宫和中岛:Ag 预吸附对 Si(111) 上 Ge 生长的影响
  • DOI:
    10.1103/physrevb.94.235410
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    T. Schmidt;M. Speckmann;J. Flege;K. Müller-Caspary;I. Heidmann;A. Kubelka-Lange;T.O. Mentes;M. A. Nino;A. Locatelli;A. Rosenauer;J. Falta
  • 通讯作者:
    J. Falta
Two-dimensional strain mapping in semiconductors by nano-beam electron diffraction employing a delay-line detector
  • DOI:
    10.1063/1.4927837
  • 发表时间:
    2015-08-17
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Mueller-Caspary, Knut;Oelsner, Andreas;Potapov, Pavel
  • 通讯作者:
    Potapov, Pavel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Knut Müller-Caspary其他文献

Professor Dr. Knut Müller-Caspary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Knut Müller-Caspary', 18)}}的其他基金

Inversion of dynamical electron scattering for atomically-resolved structural analysis
用于原子分辨结构分析的动态电子散射反演
  • 批准号:
    534899849
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

nano/µ-HPLC-MS system for discovery and high-throughput proteome analysis
用于发现和高通量蛋白质组分析的 nano/μ-HPLC-MS 系统
  • 批准号:
    510957753
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Analysis of mechanical properties of interfaces by in situ TEM nano-dynamics observations
通过原位 TEM 纳米动力学观察分析界面的机械性能
  • 批准号:
    22H00255
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227460
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of nano-mechanical measurement and analysis method for sub-millimeter fuel debris
亚毫米燃料碎片纳米力学测量与分析方法开发
  • 批准号:
    22K03834
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Nano-Projectile Secondary Ion Mass Spectrometry for accurate molecular analysis at the nanoscale
LEAPS-MPS:纳米弹丸二次离子质谱法,用于纳米尺度的精确分子分析
  • 批准号:
    2213444
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227459
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Programmable micro/nano-fluidic based platform for high-throughput and large scale single-molecule analysis
基于可编程微/纳米流体的平台,用于高通量和大规模单分子分析
  • 批准号:
    RGPIN-2016-04943
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Study on magnetic structure analysis and modeling in the nano twin boundary of magnetic shape memory alloy
磁性形状记忆合金纳米孪晶界磁结构分析与建模研究
  • 批准号:
    21KK0083
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Integrated data-driven analysis of materials properties by nano-electron probe scanning real/reciprocal space
通过纳米电子探针扫描实/倒易空间对材料特性进行集成数据驱动分析
  • 批准号:
    21H04616
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Modeling and Design Optimization of High Frequency Micro and Nano Structures Exploiting Adjoint Sensitivity Analysis
利用伴随灵敏度分析的高频微纳米结构建模和设计优化
  • 批准号:
    RGPIN-2016-05451
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了