Efficient Global Dynamic Optimization using Dynamic Cut Generation and Domain Reduction Techniques
使用动态剪切生成和域缩减技术进行高效的全局动态优化
基本信息
- 批准号:1949747
- 负责人:
- 金额:$ 29.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamic optimization is a computational approach used to optimally control dynamic processes. Effective dynamic optimization codes have become a key enabling technology in many industries, leading to substantial gains in profitability, efficiency, and safety. However, dynamic optimization problems commonly exhibit multiple sub-optimal local solutions. Use of these sub-optimal solutions instead of the desired globally optimal solution can lead to significant economic loss and performance degradation in many applications; this can even produce expensive or dangerous unreliable conclusions. This project aims to develop more efficient global optimization algorithms for types of problems that arise in a broad spectrum of applications in the chemical, pharmaceutical and aerospace industries.This project aims to increase the efficiency of global dynamic optimization (GDO) codes by developing cut generation and domain reduction techniques in the branch and bound (B&B) algorithm for solving nonconvex algebraic optimization problems. Cut generation refers broadly to methods that strengthen the convex relaxation of a nonconvex problem by imposing constraints that are redundant in the original model, but not in the relaxation. In contrast, domain reduction refers to methods that tighten the bounds on the decision variables in a B&B node using the problem constraints or a known feasible objective value. Research into such techniques for GDO is very well motivated by analogy to standard nonlinear programs (NLPs). Prior work on GDO has focused on relaxation methods that can be considered dynamic extensions of the most basic methods used for NLPs (specifically those based on factorable decomposition, such as McCormick relaxations). However, B&B codes based solely on these techniques are extremely inefficient in most cases. In contrast, modern B&B codes, which routinely solve problems with hundreds of decisions, utilize a rich toolbox of cut generation and domain reduction techniques. This strongly suggests that analogous techniques for dynamic problems will profoundly impact the efficiency of GDO algorithms. In addition to training graduate students, the proposed research will involve training of undergraduate researchers through Clemson's Creative Inquiry Program and rising high school seniors through Clemson's six-week Summer Program for Research Interns. The project also includes the development of a half-day long hands-on research activity for educating women and minorities about career opportunities in STEM fields, hosted by Clemson's Women in Science and Engineering (WISE) Program and the Programs for Educational Enrichment and Retention (PEER).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动态优化是一种用于优化控制动态过程的计算方法。有效的动态优化代码已成为许多行业的关键使能技术,从而大幅提高了盈利能力、效率和安全性。然而,动态优化问题通常表现为多个次优局部解。在许多应用中,使用这些次优解而不是期望的全局最优解可能会导致严重的经济损失和性能下降;这甚至可能产生昂贵或危险的不可靠的结论。该项目旨在开发更高效的全局优化算法,以解决化工、制药和航空航天工业中广泛应用的各种问题。该项目旨在通过开发分支定界(B&;B)算法中的割集生成和域缩减技术来提高全局动态优化(GDO)代码的效率。割生成泛指通过施加在原始模型中冗余但在松弛中不存在的约束来加强非凸问题的凸松弛的方法。相比之下,域缩减指的是使用问题约束或已知可行的目标值来收紧B&A;B节点中决策变量的界限的方法。类似于标准的非线性规划(NLP),GDO技术的研究受到了很好的推动。以前关于GDO的工作集中在松弛方法上,这些方法可以被认为是用于NLP的最基本方法的动态扩展(特别是那些基于可因式分解的方法,如McCormick松弛)。然而,在大多数情况下,仅基于这些技术的B&A;B代码的效率极低。相比之下,现代的B&A;B代码利用了丰富的割集生成和域缩减技术工具箱,它们通常通过数百个决策来解决问题。这有力地表明,动力学问题的类似技术将深刻地影响GDO算法的效率。除了培养研究生,这项拟议的研究还将通过克莱姆森的创造性探究计划培训本科生研究人员,并通过克莱姆森为期六周的研究实习生暑期计划培养高三学生。该项目还包括开发一个为期半天的实践研究活动,教育妇女和少数民族在STEM领域的职业机会,由克莱姆森的女性科学和工程(WISE)计划和教育丰富和保留计划(PEER)主办。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extended McCormick relaxation rules for handling empty arguments representing infeasibility
用于处理代表不可行性的空参数的扩展麦考密克松弛规则
- DOI:10.1007/s10898-023-01315-7
- 发表时间:2023
- 期刊:
- 影响因子:1.8
- 作者:Ye, Jason;Scott, Joseph K.
- 通讯作者:Scott, Joseph K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Scott其他文献
Logic Guided Genetic Algorithms (Student Abstract)
逻辑引导遗传算法(学生摘要)
- DOI:
10.1609/aaai.v35i18.17873 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
D. Ashok;Joseph Scott;S. Wetzel;Maysum Panju;Vijay Ganesh - 通讯作者:
Vijay Ganesh
Modifying the severity and appearance of psoriasis using deep learning to simulate anticipated improvements during treatment
利用深度学习来模拟治疗期间预期的改善,从而改变银屑病的严重程度和外观
- DOI:
10.1038/s41598-025-91238-y - 发表时间:
2025-03-03 - 期刊:
- 影响因子:3.900
- 作者:
Joseph Scott;James A. Grant-Jacob;Matthew Praeger;George Coltart;Jonathan Sutton;Michalis N. Zervas;Mahesan Niranjan;Robert W. Eason;Eugene Healy;Ben Mills - 通讯作者:
Ben Mills
Other things besides number: Abstraction, constraint propagation, and string variable types
- DOI:
10.1007/s10601-016-9263-9 - 发表时间:
2016-12-12 - 期刊:
- 影响因子:1.300
- 作者:
Joseph Scott - 通讯作者:
Joseph Scott
An individualized approach to teaching adults with autism to successfully navigate job interviews via remote instruction.
一种通过远程指导教导患有自闭症的成年人成功应对工作面试的个性化方法。
- DOI:
10.1002/jaba.977 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
S. Kahng;Courtney Butler;Faris R. Kronfli;Christeen Zaki;Brianna Boragi;Joseph Scott - 通讯作者:
Joseph Scott
Logic Guided Genetic Algorithms
逻辑引导遗传算法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
D. Ashok;Joseph Scott;S. Wetzel;Maysum Panju;Vijay Ganesh - 通讯作者:
Vijay Ganesh
Joseph Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Scott', 18)}}的其他基金
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
- 批准号:
2232588 - 财政年份:2023
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Fault Detection and Diagnosis for Uncertain Nonlinear Systems Using Set-Based State Estimation
使用基于集合的状态估计对不确定非线性系统进行故障检测和诊断
- 批准号:
1949748 - 财政年份:2019
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Fault Detection and Diagnosis for Uncertain Nonlinear Systems Using Set-Based State Estimation
使用基于集合的状态估计对不确定非线性系统进行故障检测和诊断
- 批准号:
1826011 - 财政年份:2019
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Efficient Global Dynamic Optimization using Dynamic Cut Generation and Domain Reduction Techniques
使用动态剪切生成和域缩减技术进行高效的全局动态优化
- 批准号:
1803706 - 财政年份:2018
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
RUI: Nuclear Cytology and Centrin in the Red Algae
RUI:红藻中的核细胞学和中心蛋白
- 批准号:
9008078 - 财政年份:1990
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Comparative Nuclear Cytology and Ultrastructure in the Red Algae
红藻的比较核细胞学和超微结构
- 批准号:
8615288 - 财政年份:1987
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
PUI: Acquisition of a Transmission Electron Microscope
PUI:购买透射电子显微镜
- 批准号:
8411795 - 财政年份:1984
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
PUI: Comparative Nuclear Cytology in the Red Algae
PUI:红藻的比较核细胞学
- 批准号:
8307714 - 财政年份:1983
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
ESG practices and financial implications in the dynamic global socio-economic context
动态的全球社会经济背景下的 ESG 实践和财务影响
- 批准号:
24K16420 - 财政年份:2024
- 资助金额:
$ 29.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimizing HPV vaccination programs in Low- and Middle-Income Countries (LMIC) and High-Income Countries (HIC) to reduce inequalities and reach global elimination of cervical cancer: An integrated knowledge translation dynamic-modeling approach
优化中低收入国家 (LMIC) 和高收入国家 (HIC) 的 HPV 疫苗接种计划,以减少不平等并实现全球消除宫颈癌:综合知识转化动态建模方法
- 批准号:
495110 - 财政年份:2023
- 资助金额:
$ 29.05万 - 项目类别:
Operating Grants
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2022
- 资助金额:
$ 29.05万 - 项目类别:
Discovery Grants Program - Individual
Improving Plant Functional Resolution in Dynamic Global Vegetation Models
提高动态全球植被模型中的植物功能分辨率
- 批准号:
547654-2020 - 财政年份:2022
- 资助金额:
$ 29.05万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Improving Plant Functional Resolution in Dynamic Global Vegetation Models
提高动态全球植被模型中的植物功能分辨率
- 批准号:
547654-2020 - 财政年份:2021
- 资助金额:
$ 29.05万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Effects of exchange rate fluctuation and global shocks on exporting firms' dynamic behavior
汇率波动和全球冲击对出口企业动态行为的影响
- 批准号:
21K01567 - 财政年份:2021
- 资助金额:
$ 29.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2021
- 资助金额:
$ 29.05万 - 项目类别:
Discovery Grants Program - Individual
Dynamic assessment of threats to marine megafauna in face of global change
动态评估全球变化对海洋巨型动物的威胁
- 批准号:
DP210103091 - 财政年份:2021
- 资助金额:
$ 29.05万 - 项目类别:
Discovery Projects
Time Series Classification for Complex Dynamic Global Problems
复杂动态全局问题的时间序列分类
- 批准号:
DP210100072 - 财政年份:2021
- 资助金额:
$ 29.05万 - 项目类别:
Discovery Projects
The Expedit-Isotopomeric CrossLinking Mass Spectrometry (Expedit-ICLMS) technology for mapping global and dynamic protein-protein interaction networks
用于绘制全局和动态蛋白质-蛋白质相互作用网络的快速同位素交联质谱 (Expedit-ICLMS) 技术
- 批准号:
10596082 - 财政年份:2020
- 资助金额:
$ 29.05万 - 项目类别: