Frameworks for Generic Robust Inference, Mismeasured Spatial and Network Data, and Nonlinear Dimension Reduction
通用鲁棒推理、误测空间和网络数据以及非线性降维的框架
基本信息
- 批准号:1950969
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will conduct three sub-projects to improve upon existing statistical inference methods. There is a need for more generally applicable easy-to-use simulation-based statistical inference methods that exploit the availability of machine learning and other advanced data processing techniques. This project will develop more broadly applicable simulation-based inference methods. It will enable measurement-error robust inference in models based on spatial or network data. Finally, the project will improve the scalability of nonlinear dimension-reduction techniques. The simulation-based statistical inference methods developed under this project will have significant impact on data science in general. Research efforts increasingly rely on sophisticated data analysis methods where traditional simulation methods fail to provide reliable inference. Studies in the social, medical, and natural sciences increasingly are leveraging the broad availability of spatial or network data as well as high-dimensional data. These fields will be significantly impacted by the methods to be developed. Graduate students will play an important role in the development and implementation of the proposed methods.This project will push the boundary of existing inferential methods via the use of a broad range of novel concepts. The investigator will use the idea of super-sampling, in which an augmented sample, larger than the dataset itself, is generated and optimized to represent the true population. The research will exploit the idea of using neighboring data points in spatial or network data to disentangle the true signal from noise. The project extends that domain of applicability of existing resampling methods that are based on the observed sample or subsets to carefully constructed hypothetical populations larger than the sample. The project also will address the presence of measurement error in spatial or network contexts by viewing neighboring data points as repeated measurements of the true underlying variables of interest. These measurements do not conform to classical frameworks based on statistically independent errors and thus demand dedicated techniques. Finally, the nonlinear dimension-reduction techniques to be used will merge the concepts of optimal transport, entropy maximization, and simulation-based estimation in novel ways. Dimension reduction techniques have applications in fields as diverse as finance, psychology, neurology, data compression, information retrieval and processing, and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目将开展三个子项目,对现有的统计推断方法进行改进。需要更普遍适用的、易于使用的基于模拟的统计推断方法,利用机器学习和其他先进的数据处理技术的可用性。该项目将开发更广泛适用的基于仿真的推理方法。它将在基于空间或网络数据的模型中实现测量误差的鲁棒推断。最后,该项目将提高非线性降维技术的可扩展性。在这个项目下开发的基于模拟的统计推断方法将对数据科学产生重大影响。研究工作越来越依赖于复杂的数据分析方法,而传统的模拟方法无法提供可靠的推断。社会、医学和自然科学的研究越来越多地利用空间或网络数据以及高维数据的广泛可用性。这些领域将受到待开发方法的重大影响。研究生将在提出的方法的发展和实施中发挥重要作用。这个项目将通过使用广泛的新概念来突破现有推理方法的界限。研究者将使用超级抽样的概念,即生成一个比数据集本身更大的增强样本,并对其进行优化,以代表真实的总体。该研究将利用空间或网络数据中的相邻数据点来将真实信号从噪声中分离出来。该项目将现有的基于观察到的样本或子集的重新抽样方法的适用性领域扩展到精心构建的大于样本的假设总体。该项目还将通过将相邻数据点视为感兴趣的真正潜在变量的重复测量来解决空间或网络环境中测量误差的存在。这些测量不符合基于统计独立误差的经典框架,因此需要专门的技术。最后,将使用的非线性降维技术将以新颖的方式融合最优传输、熵最大化和基于模拟的估计的概念。降维技术在金融、心理学、神经学、数据压缩、信息检索和处理以及机器学习等领域都有应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of a Triangular Two Equation System Without Instruments
三角二方程组的无仪器辨识
- DOI:10.1080/07350015.2023.2166052
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Lewbel, Arthur;Schennach, Susanne M.;Zhang, Linqi
- 通讯作者:Zhang, Linqi
Independent Nonlinear Component Analysis
独立非线性分量分析
- DOI:10.1080/01621459.2021.1990768
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Gunsilius, Florian;Schennach, Susanne
- 通讯作者:Schennach, Susanne
Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors
具有连续非经典测量误差的非参数单调回归模型的识别
- DOI:10.1016/j.jeconom.2020.09.014
- 发表时间:2022
- 期刊:
- 影响因子:6.3
- 作者:Hu, Yingyao;Schennach, Susanne;Shiu, Ji-Liang
- 通讯作者:Shiu, Ji-Liang
Measurement Systems
测量系统
- DOI:10.1257/jel.20211355
- 发表时间:2022
- 期刊:
- 影响因子:12.6
- 作者:Schennach, Susanne
- 通讯作者:Schennach, Susanne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanne Schennach其他文献
Susanne Schennach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanne Schennach', 18)}}的其他基金
Hybrid Methods for Statistical and Econometric Modeling
统计和计量经济建模的混合方法
- 批准号:
2150003 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Nonlinear Factor and Latent Variable Models
非线性因子和潜变量模型
- 批准号:
1659334 - 财政年份:2017
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Novel Approaches to Nonlinear Panel Data Analysis and Model Selection
非线性面板数据分析和模型选择的新方法
- 批准号:
1061263 - 财政年份:2011
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Novel Approaches to Nonlinear Panel Data Analysis and Model Selection
非线性面板数据分析和模型选择的新方法
- 批准号:
1156347 - 财政年份:2011
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Measurement Error and Other Latent Variable Problems
测量误差和其他潜在变量问题
- 批准号:
0752699 - 财政年份:2008
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Nonlinear Models with Errors-in-Variables
具有变量误差的非线性模型
- 批准号:
0452089 - 财政年份:2005
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
A Simulation-Based Information-Theoretic Estimator of Economic Models with Unobserved Variables
具有不可观测变量的经济模型的基于仿真的信息论估计器
- 批准号:
0214068 - 财政年份:2002
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
相似海外基金
EnLAmB - Enabling global access to affordable generic liposomal amphotericin B injectable formulations via advanced manufacturing technology
EnLAmB - 通过先进的制造技术,使全球能够获得负担得起的通用脂质体两性霉素 B 注射制剂
- 批准号:
MR/X014010/1 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Research Grant
An Empirical Analysis of Generic Pharmaceuticals Substitution Under Quality Uncertainty
质量不确定性下仿制药替代的实证分析
- 批准号:
23KJ1904 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Implementation of an innovative generic RI stationary target to study unstable nuclear photoabsorption reactions
实施创新的通用 RI 固定靶来研究不稳定的核光吸收反应
- 批准号:
23H00113 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Feasibility of predicting regional lung exposure from systemic pharmacokinetic data of generic OIDPs via population pharmacokinetic modeling and non-compartmental approaches
通过群体药代动力学模型和非房室方法根据仿制药 OIDP 的全身药代动力学数据预测局部肺暴露的可行性
- 批准号:
10797284 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Studies on generic Cohen-Macaulay modules and their applications
通用Cohen-Macaulay模及其应用研究
- 批准号:
23K12954 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CIF: Small: Generic Building Blocks of Communication-efficient Computation Networks - Fundamental Limits
CIF:小型:通信高效计算网络的通用构建块 - 基本限制
- 批准号:
2221379 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Mining the phage playbook to create a potent, generic phage therapy
挖掘噬菌体剧本以创建有效的通用噬菌体疗法
- 批准号:
10723647 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
A fast and generic simulation method for entangled polymers
一种快速通用的缠结聚合物模拟方法
- 批准号:
22H01189 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSFDEB-NERC: Subtribal classification and generic delimitation among Eastern Hemisphere ironweeds (Vernonieae, Compositae).
NSFDEB-NERC:东半球铁草属(斑鸠菊科、菊科)的亚部落分类和属属界定。
- 批准号:
2210598 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Generic AC-DC load-flow solution method with controllable AC-DC converters
具有可控AC-DC变换器的通用AC-DC潮流求解方法
- 批准号:
RGPIN-2020-04509 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Individual