Measurement Error and Other Latent Variable Problems
测量误差和其他潜在变量问题
基本信息
- 批准号:0752699
- 负责人:
- 金额:$ 14.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Measurement error is pervasive in economic data, which motivates the development of econometric methods that are robust to measurement error. In earlier work, the investigator devised such methods to handle classical (i.e. zero mean) and nonclassical measurement error in a wide variety of econometric models. However, a number of measurement error and more general latent variable models have yet to be satisfactorily covered in the literature, a situation this project aims to address. One of them is the so-called Berkson-type measurement error model (e.g. an error that is uncorrelated with the observed data but correlated with the true unobserved data) when repeated measurements or instrumental variables are available. This type of error arises naturally in economic settings when the agents reporting the data attempt to form the best possible predictor given their information. Another overlooked problem closely tied to measurement error is the identification of nonparametric and nonseparable factor models. Factor models (in their simplest, linear and separable, form) have a long history in economics and in the social sciences as a way to extract a small number of true latent factors from a large number of imperfect proxies. The proposed work considerably extends factor models' range of applicability and complements the active literature on nonparametric and nonseparable endogenous models. This project's last contribution is a unified approach to the estimation of measurement error and more general latent variables models, called Entropic Latent Variable Integration via Simulation (ELVIS). This method transparently covers both point- and set-identified models and enables researchers to freely impose suitable restrictions on the unobservable latent variables taking the form of (conditional) moment conditions or independence without having to explicitly specify the distribution of the unobservables. The proposed approach is based upon earlier work by the PI on the Bayesian Exponentially Tilted Empirical Likelihood (BETEL), which provides a formal Bayesian framework for moment condition models. Properly handling the presence of measurement error and other latent variables is a longstanding and extensively studied problem in econometrics and statistics. While some types of measurement error have been addressed in the PI's earlier work (which led, inter alia, to publications in Econometrica and Econometric Theory), this project considerably extends and complements these earlier findings to provide a complete set of statistical tools targeting latent variables models. The use of advanced functional- and operator-based methods to address fully nonparametric and nonseparable settings is a key distinguishing feature of the proposed work. The ELVIS-BETEL method combines of a wide array of techniques (e.g. simulation-based approaches, entropy maximization, nonparametric Bayesian methods and empirical likelihood) in order to yield a widely applicable inference method. Broader Impacts: The issues of measurement error and latent variables concern a large community within econometrics, statistics and the social sciences in general. The findings will be disseminated broadly through presentations at both econometrics and statistics conferences, in addition to publishing papers in journals of both fields. A computer program implementing the proposed ELVIS estimation method will be made publicly available on the investigator's web site. The proposed methods will also be included in the PI's graduate class, which covers a wide range of measurement error analysis and empirical likelihood methods, thus providing a new generation of researchers with powerful tools to more accurately analyze economic data.
计量误差在经济数据中普遍存在,这促使了对计量误差具有鲁棒性的计量经济学方法的发展。在早期的工作中,研究者设计了这样的方法来处理各种计量经济学模型中的经典(即零均值)和非经典测量误差。然而,一些测量误差和更一般的潜变量模型尚未令人满意地涵盖在文献中,这种情况下,本项目的目的是解决。其中之一是所谓的Berkson型测量误差模型(例如,当重复测量或仪器变量可用时,与观测数据不相关但与真实未观测数据相关的误差)。在经济环境中,当报告数据的代理人试图根据他们的信息形成最佳预测时,这种类型的错误自然会出现。另一个与测量误差密切相关的被忽视的问题是非参数和不可分离因子模型的识别。因素模型(以其最简单的线性和可分离的形式)在经济学和社会科学中有着悠久的历史,作为一种从大量不完美的代理中提取少量真实潜在因素的方法。拟议的工作大大扩展了因素模型的适用范围,并补充了非参数和不可分离的内生模型的积极文献。该项目的最后一个贡献是一个统一的方法来估计测量误差和更一般的潜变量模型,称为熵潜变量集成通过模拟(ELVIS)。这种方法透明地覆盖了点和集合识别模型,使研究人员能够自由地对不可观测的潜变量施加适当的限制,而无需明确指定不可观测的分布。所提出的方法是基于早期工作的PI贝叶斯指数倾斜经验似然(BETEL),它提供了一个正式的贝叶斯框架的时刻条件模型。正确处理测量误差和其他潜在变量的存在是计量经济学和统计学中一个长期和广泛研究的问题。虽然PI的早期工作中已经解决了某些类型的测量误差(除其他外,还导致了《计量经济学》和《计量经济学理论》的出版物),但该项目大大扩展和补充了这些早期发现,以提供一套完整的针对潜变量的统计工具模型。使用先进的功能和运营商为基础的方法,以解决完全非参数和不可分离的设置是一个关键的显着特点,拟议的工作。ELVIS-BETEL方法结合了各种技术(例如基于模拟的方法,熵最大化,非参数贝叶斯方法和经验似然),以产生广泛适用的推理方法。更广泛的影响:测量误差和潜变量的问题涉及到计量经济学,统计学和社会科学中的一个大社区。调查结果将通过在计量经济学和统计学会议上的介绍以及在这两个领域的期刊上发表论文而广泛传播。将在研究者的网站上公开提供一个实施拟议ELVIS估计方法的计算机程序。所提出的方法也将包括在PI的研究生课程中,该课程涵盖了广泛的测量误差分析和经验似然方法,从而为新一代研究人员提供了更准确地分析经济数据的强大工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanne Schennach其他文献
Susanne Schennach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanne Schennach', 18)}}的其他基金
Hybrid Methods for Statistical and Econometric Modeling
统计和计量经济建模的混合方法
- 批准号:
2150003 - 财政年份:2022
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Frameworks for Generic Robust Inference, Mismeasured Spatial and Network Data, and Nonlinear Dimension Reduction
通用鲁棒推理、误测空间和网络数据以及非线性降维的框架
- 批准号:
1950969 - 财政年份:2020
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Nonlinear Factor and Latent Variable Models
非线性因子和潜变量模型
- 批准号:
1659334 - 财政年份:2017
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Latent Variable and Long-Memory Models
潜变量和长记忆模型
- 批准号:
1357401 - 财政年份:2014
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Novel Approaches to Nonlinear Panel Data Analysis and Model Selection
非线性面板数据分析和模型选择的新方法
- 批准号:
1061263 - 财政年份:2011
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Novel Approaches to Nonlinear Panel Data Analysis and Model Selection
非线性面板数据分析和模型选择的新方法
- 批准号:
1156347 - 财政年份:2011
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Nonlinear Models with Errors-in-Variables
具有变量误差的非线性模型
- 批准号:
0452089 - 财政年份:2005
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
A Simulation-Based Information-Theoretic Estimator of Economic Models with Unobserved Variables
具有不可观测变量的经济模型的基于仿真的信息论估计器
- 批准号:
0214068 - 财政年份:2002
- 资助金额:
$ 14.37万 - 项目类别:
Continuing Grant
相似国自然基金
基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
- 批准号:11001280
- 批准年份:2010
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
- 批准号:
24K18094 - 财政年份:2024
- 资助金额:
$ 14.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Superconducting Circuits for Error-Resilient Quantum Computers
用于容错量子计算机的超导电路
- 批准号:
DE240101033 - 财政年份:2024
- 资助金额:
$ 14.37万 - 项目类别:
Discovery Early Career Researcher Award
CRII: AF: RUI: New Frontiers in Fundamental Error-Correcting Codes
CRII:AF:RUI:基本纠错码的新领域
- 批准号:
2347371 - 财政年份:2024
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
CAREER: Coding Subspaces: Error Correction, Compression and Applications
职业:编码子空间:纠错、压缩和应用
- 批准号:
2415440 - 财政年份:2024
- 资助金额:
$ 14.37万 - 项目类别:
Continuing Grant
Error Detection of Utterances for Non-native Speakers Using Deep Anomaly Detection Technology
使用深度异常检测技术对非母语人士的话语进行错误检测
- 批准号:
23K11238 - 财政年份:2023
- 资助金额:
$ 14.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Error Correction in a dual-species Rydberg array (QuERy)
双物种里德堡阵列中的量子纠错 (QuERy)
- 批准号:
EP/X025055/1 - 财政年份:2023
- 资助金额:
$ 14.37万 - 项目类别:
Research Grant
CAREER: User-Based Simulation Methods for Quantifying Sources of Error and Bias in Recommender Systems
职业:基于用户的模拟方法,用于量化推荐系统中的错误和偏差来源
- 批准号:
2415042 - 财政年份:2023
- 资助金额:
$ 14.37万 - 项目类别:
Continuing Grant
Building an Error-Annotated Corpus of Learner Indonesian and Developing an Automated Writing Support for Japanese Students Using Deep Linguistic Indonesian Parsers
建立一个错误注释的印尼语学习者语料库,并使用深度语言印尼语解析器为日本学生开发自动写作支持
- 批准号:
23K12235 - 财政年份:2023
- 资助金额:
$ 14.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on continuous-variable optical quantum error correction
连续可变光量子纠错研究
- 批准号:
23KJ0498 - 财政年份:2023
- 资助金额:
$ 14.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The interplay between Inborn Error of Immunity and blood disorders: unravelling immune defects behind common haematological diseases
先天性免疫错误与血液疾病之间的相互作用:揭示常见血液病背后的免疫缺陷
- 批准号:
486782 - 财政年份:2023
- 资助金额:
$ 14.37万 - 项目类别:
Operating Grants