Molecular dissection of protein poly(ADP-ribosyl)ation in plant immunity and pathogen-induced DNA damage

植物免疫和病原体诱导的 DNA 损伤中蛋白质聚(ADP-核糖基)化的分子解析

基本信息

  • 批准号:
    1951094
  • 负责人:
  • 金额:
    $ 114.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Immune responses in plants is collectively represented by a wide range of processes that have evolved to protect plants during pathogen and pest infection. Among the various responses plants use to defend themselves, and moreover, processes that pathogens target to disable the plant immune system, damage to DNA – the genetic code that underpins all of life – is one key point of interaction between plants and pathogens. In the current study, the investigators ask: How do plants protect and repair damage to DNA during pathogen infection to ensure that the immune system continues to function. Previous research in this area suggests that at least 1 type of repair mechanism – poly(ADP-ribosyl)ation (i.e., PARylation) – plays a critical role in a maintenance of cell survival and immune signaling. In short, this mechanism has the ability to detect and repair damage to the plant (host) DNA. As a key process required for immunity during pathogen infection, the researchers will test the hypothesis that PARylation provides a mechanistic link between plant immunity and pathogen-induced DNA damage. The molecular and biochemical mechanisms underlying the regulation of plant immunity by protein PARylation and genome integrity after pathogen infection will be determined. Knowledge generated from these studies is expected to help design better disease control strategies for crop improvement.PARylation is primarily mediated by poly(ADP-ribose) polymerase (PARP), which transfers ADP-ribose moieties from NAD+ to acceptor proteins. This modification is reversible and the covalently attached poly(ADP-ribose) can be cleaved from acceptor proteins by poly(ADP-ribose) glycohydrolase (PARG). PARylation has been extensively characterized in humans due to its profound medical impacts in various inflammatory and malignant disorders and especially cancer chemotherapy. However, the function of PARylation in plants is poorly understood. The viability and normal growth of Arabidopsis parp and parg null mutants provide a unique opportunity to study protein PARylation in diverse cellular processes, including plant immunity and DNA damage repair at the whole organismal level. The results of the work will provide novel insights in understanding how the two fundamental surveillance mechanisms, DNA damage and plant defense responses, are intricately interconnected and function coordinately. This proposal aims to unravel the regulatory mechanisms of PARylation in plant immunity, identify the targets of PARylation-regulated immune genes and proteins, and elucidate the mechanism of pathogen-induced DNA damage and how it is protected by PARylation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物的免疫反应由一系列广泛的过程共同代表,这些过程的进化是为了在病原体和害虫感染期间保护植物。在植物用于保护自身的各种反应中,以及病原体旨在使植物免疫系统瘫痪的过程中,对 DNA(支撑所有生命的遗传密码)的损害是植物与病原体之间相互作用的关键点之一。在当前的研究中,研究人员提出疑问:植物如何在病原体感染过程中保护和修复DNA损伤,以确保免疫系统继续发挥作用。该领域的先前研究表明,至少有一种修复机制——聚(ADP-核糖基)化(即 PARylation)——在维持细胞存活和免疫信号传导中发挥着关键作用。简而言之,这种机制具有检测和修复植物(宿主)DNA损伤的能力。作为病原体感染期间免疫所需的关键过程,研究人员将检验以下假设:PARylation 在植物免疫和病原体诱导的 DNA 损伤之间提供了机制联系。将确定病原体感染后通过蛋白质 PARylation 和基因组完整性调节植物免疫的分子和生化机制。这些研究产生的知识预计将有助于设计更好的作物改良疾病控制策略。PARylation主要由聚(ADP-核糖)聚合酶(PARP)介导,它将ADP-核糖部分从NAD+转移到受体蛋白。这种修饰是可逆的,共价连接的聚(ADP-核糖)可以通过聚(ADP-核糖)糖水解酶(PARG)从受体蛋白上裂解下来。由于其对各种炎症和恶性疾病,尤其是癌症化疗的深远医学影响,PARylation 在人类中得到了广泛的表征。然而,人们对植物中 PARylation 的功能知之甚少。拟南芥 parp 和 parg 无效突变体的活力和正常生长为研究不同细胞过程中的蛋白质 PARylation 提供了独特的机会,包括整个有机体水平的植物免疫和 DNA 损伤修复。这项工作的结果将为理解 DNA 损伤和植物防御反应这两种基本监测机制如何错综复杂地相互关联和协调运作提供新的见解。该提案旨在揭示PARylation在植物免疫中的调控机制,识别PARylation调节的免疫基因和蛋白的靶点,阐明病原体诱导的DNA损伤的机制以及PARylation如何保护它。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,认为值得支持 标准。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The symphony of maize signaling quartet defending against gray leaf spot
玉米防御灰斑病的信号四重奏交响曲
  • DOI:
    10.1007/s44154-024-00157-x
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Ping;He, Ping
  • 通讯作者:
    He, Ping
A phospho-switch constrains BTL2-mediated phytocytokine signaling in plant immunity
  • DOI:
    10.1016/j.cell.2023.04.027
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    64.5
  • 作者:
    Xiao Yu;Yingpeng Xie;Dexian Luo;Hai Liu;M. V. D. Oliveira;Peipei Qi;Sung-Il Kim;F. A. Ortiz-Morea;Jun Liu;Yafei Chen;Sixue Chen;Bárbara Rodrigues;Bo Li;Shaowu Xue;Ping He;Libo Shan
  • 通讯作者:
    Xiao Yu;Yingpeng Xie;Dexian Luo;Hai Liu;M. V. D. Oliveira;Peipei Qi;Sung-Il Kim;F. A. Ortiz-Morea;Jun Liu;Yafei Chen;Sixue Chen;Bárbara Rodrigues;Bo Li;Shaowu Xue;Ping He;Libo Shan
A Clickable NAD+ Analog-Based Assay of Poly(ADP-Ribosyl)ated Proteins
基于可点击 NAD 类似物的聚 (ADP-核糖基) 化蛋白质检测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongsheng Yao, Heba Ahmed
  • 通讯作者:
    Dongsheng Yao, Heba Ahmed
An unexpected role for tomato threonine deaminase 2 in host defense against bacterial infection
  • DOI:
    10.1093/plphys/kiac584
  • 发表时间:
    2022-12-19
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Yeo,In-Cheol;de Azevedo Manhaes,Ana Marcia Escocard;Devarenne,Timothy P.
  • 通讯作者:
    Devarenne,Timothy P.
Plant plasma membrane-resident receptors: Surveillance for infections and coordination for growth and development.
植物质膜驻留受体:监视感染并协调生长和发育。
  • DOI:
    10.1111/jipb.13051
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Escocard de Azevedo Manhães AM;Ortiz-Morea FA;He P;Shan L
  • 通讯作者:
    Shan L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junqi Song其他文献

Performance and mechanism of the biochar-supported Ni<sup>0</sup>/Co<sup>0</sup>/MnO composite catalyst for peroxymonosulfate activation to degrade iopamidol
  • DOI:
    10.1016/j.jece.2024.114811
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Meijuan Gao;Hong Wei;Qian Cai;Ruijie Teng;Junqi Song;Feng Pan;Huaien Li
  • 通讯作者:
    Huaien Li
[Cultivation and serial propagation of a new rotavirus causing adult diarrhea in primary human embryo kidney cells].
引起成人腹泻的新型轮状病毒在原代人胚胎肾细胞中的培养和连续繁殖。
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Ji;Y. Bi;Hongyan Yang;Fengrong Yang;Junqi Song;Xiaoxiao Tao;Xiaoying Cui
  • 通讯作者:
    Xiaoying Cui
Potato and Tomato Forever Young Genes Contain class-I Patatin promoter-like Sequences
马铃薯和番茄 Forever Young 基因含有 I 类 Patatin 启动子样序列
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Fu;Jinkun Du;Junqi Song;Jiming Jiang;W. Park
  • 通讯作者:
    W. Park
Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats.
高度浓缩的马铃薯着丝粒周围异染色质含有 rDNA 相关串联重复序列。
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    R. Stupar;Junqi Song;Ahmet L Tek;Zhukuan Cheng;F. Dong;Jiming Jiang
  • 通讯作者:
    Jiming Jiang
3-Aminobenzamide Blocks MAMP-Induced Callose Deposition Independently of Its Poly(ADPribosyl)ation Inhibiting Activity
3-氨基苯甲酰胺阻断 MAMP 诱导的胼胝质沉积,与其聚 (ADPribosyl) 化抑制活性无关
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Brian D. Keppler;Junqi Song;J. Nyman;C. Voigt;A. Bent
  • 通讯作者:
    A. Bent

Junqi Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Molecular and functional characterization of type I and II vestibular hair cells in adult mice
成年小鼠 I 型和 II 型前庭毛细胞的分子和功能特征
  • 批准号:
    10749188
  • 财政年份:
    2023
  • 资助金额:
    $ 114.55万
  • 项目类别:
Structural Basis and Molecular Mechanism of GPCR-Arrestin Interactions
GPCR-Arrestin 相互作用的结构基础和分子机制
  • 批准号:
    10713322
  • 财政年份:
    2023
  • 资助金额:
    $ 114.55万
  • 项目类别:
Molecular Dissection of the Axonal Injury Response for Regeneration and Neuroprotection
轴突损伤反应再生和神经保护的分子解剖
  • 批准号:
    10817383
  • 财政年份:
    2023
  • 资助金额:
    $ 114.55万
  • 项目类别:
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
  • 批准号:
    10753902
  • 财政年份:
    2023
  • 资助金额:
    $ 114.55万
  • 项目类别:
Deciphering the Molecular Features Underlying LRP1-Mediated Tau Spread
破译 LRP1 介导的 Tau 扩散的分子特征
  • 批准号:
    10834533
  • 财政年份:
    2022
  • 资助金额:
    $ 114.55万
  • 项目类别:
Molecular dissection of Hematopoietic Stem Cell specification triggered by inflammatory mediators
炎症介质触发造血干细胞规范的分子解剖
  • 批准号:
    10552605
  • 财政年份:
    2022
  • 资助金额:
    $ 114.55万
  • 项目类别:
Deciphering the Molecular Features Underlying LRP1-Mediated Tau Spread
破译 LRP1 介导的 Tau 扩散的分子特征
  • 批准号:
    10448696
  • 财政年份:
    2022
  • 资助金额:
    $ 114.55万
  • 项目类别:
Molecular characterization of lipofuscin pathology in neuronal ceroid lipofuscinosis
神经元蜡状脂褐质沉积症脂褐质病理学的分子特征
  • 批准号:
    10604677
  • 财政年份:
    2022
  • 资助金额:
    $ 114.55万
  • 项目类别:
Kidney single cell and spatial molecular atlas project - KIDSSMAP
肾脏单细胞和空间分子图谱项目 - KIDSSMAP
  • 批准号:
    10867926
  • 财政年份:
    2022
  • 资助金额:
    $ 114.55万
  • 项目类别:
Uncovering cargo and cell type specific molecular mechanisms of renal tubular epithelial transport
揭示肾小管上皮运输的货物和细胞类型特异性分子机制
  • 批准号:
    10705236
  • 财政年份:
    2022
  • 资助金额:
    $ 114.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了