Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
基本信息
- 批准号:10753902
- 负责人:
- 金额:$ 63.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsActomyosinAcuteAddressAdultAgeAlzheimer&aposs DiseaseAnimal ModelAnimalsAreaArticulationAutophagocytosisBasic ScienceBiologicalBiologyBrainBrain DiseasesCaenorhabditis elegansCardiac MyocytesCell physiologyCellsCellular biologyCollectionComplexCytokinesisCytoskeletal ProteinsCytoskeletonDataDiseaseDissectionEventFoundationsFutureGeneticGoalsGrowthHandHealthHumanHuntington DiseaseImageIndividualInterventionKinesisKnowledgeLearningLipidsLongevityMeasuresMediatingMembraneMethodsMicrotubule-Organizing CenterMicrotubulesModelingMolecularMolecular ChaperonesMolecular GeneticsMovementMusMuscleNanotubesNerve DegenerationNervous SystemNeurodegenerative DisordersNeuronsNeurosciencesOrganellesOrganismPathogenesisPathologyPathway interactionsProcessProductionProteinsQuality ControlReportingRoleRouteStressSystemTestingTherapeuticTherapeutic InterventionToxinVesicleVisualizationWorkaging brainaging populationbrain healthclinical developmentdriving forceextracellulargenetic manipulationhealthy aginghuman diseasein vivoin vivo imaginginsightmature animalmulticatalytic endopeptidase complexneuronal cell bodyneuroprotectionneurotoxicnoveloverexpressionpermissivenesspolyglutamineprotein aggregationprotein degradationproteostasisproteotoxicitysegregationtooluptake
项目摘要
Healthy aging of the brain is highly dependent upon a range of protein quality control systems, and such quality
control capacity is often disrupted in neurodegenerative disease. Recently it has come to light that diseased
neurons can transfer toxic products, such as aggregated proteins, to neighboring cells, likely leading to the
spread of pathology within the brain. How neurons generate and send out extracellular material in vivo is a
question that must be addressed as we consider therapeutic intervention. Basic research can inform on
mechanisms relevant to late onset neurodegenerative disease and can suggest avenues of treatment.
Our studies take advantage of the enormous technical advantages in the simple animal model C. elegans
permissive of experimentation that can yield mechanistic insight into neurodegeneration and neuroprotection
biology. With high conservation of molecular function and a naturally transparent body plan, lessons learned
from individual neuronal dynamics directly visualized and measured within the intact adult animal provides high
predictive power for understanding key subcellular processes in more complex systems, including humans.
We discovered that some stressed C. elegans neurons can extrude giant vesicles we call “exophers” that can
be loaded with human disease protein aggregates. Exopher formation dramatically increases upon increased
challenge to protein quality control in those neurons, including over-expressing human Alzheimer’s disease
fragment Aβ1-42 or Huntington’s disease-associated polyQ protein. Aggregated proteins extruded in exophers
are taken up by a glial pruning-like interaction with the neighboring cell, which attempts degradation.
We hypothesize that exopher production is a previously unrecognized alternative route for adult neurons to
clear protein aggregates and damaged organelles. Highly similar processes of giant vesicle budding and
transfer of aggregates, lipids, and damaged organelles have been recently reported in C. elegans muscle,
mouse cardiomyocytes, and mouse and human brain, strongly implying that discoveries we make about how
this process operates in C. elegans will be widely relevant across species, including informing on elusive
spreading mechanisms operating in human brain in neurodegenerative disease.
We propose to exploit the considerable advantages of the C. elegans model (transparent body, facile genetic
manipulation, exquisitely defined nervous system, powerful cell biology, short lifespan) to advance fundamental
understanding of exopher biology. Our goals are to define the genetic and cell biological mechanisms
operative in exopher formation with a focus on the cytoskeletal roles in exophergenesis: 1) define the genetic
and cell biological mechanisms of microtubule dynamics that mediate exopher formation; 2) address how a
neuron accomplishes scission that releases a large aggregate-filled domain, leaving behind an intact neuron.
Our work should inform on a novel pathway of proteostasis control relevant to both healthy brain aging and
neurodegenerative disease, defining a new area for study and for development of clinical interventions.
大脑的健康老化高度依赖于一系列蛋白质质量控制系统,并且这种质量控制系统可以使大脑健康老化。
在神经变性疾病中,控制能力经常被破坏。最近人们发现,
神经元可以将有毒产物,如聚集的蛋白质,转移到邻近的细胞,可能导致神经元的死亡。
病理学在大脑中的传播。神经元如何在体内产生和发出细胞外物质是一个重要的问题。
这是我们在考虑治疗干预时必须解决的问题。基础研究可以提供
与迟发性神经退行性疾病相关的机制,并可以提出治疗途径。
我们的研究利用了简单动物模型C的巨大技术优势。elegans
允许实验,可以产生对神经变性和神经保护的机械见解
生物学由于分子功能的高度保守性和自然透明的身体结构,
从在完整的成年动物内直接可视化和测量的单个神经元动力学,
具有理解更复杂系统(包括人类)中关键亚细胞过程的预测能力。
我们发现有些人强调C。线虫的神经元可以挤出我们称之为“外泌体”的巨大囊泡,
装载人类疾病蛋白质聚集体。出窍者的形成在增加时显著增加
这些神经元中蛋白质质量控制的挑战,包括过度表达人类阿尔茨海默病
片段Aβ1-42或亨廷顿病相关polyQ蛋白。聚集的蛋白质在胞外体中挤出
通过与邻近细胞的类似神经胶质修剪的相互作用而被吸收,这试图降解。
我们假设exopher的产生是一种以前未被认识到的成年神经元的替代途径,
清除蛋白质聚集体和受损的细胞器。巨大的泡状体出芽过程和
最近在C.线虫肌肉,
小鼠心肌细胞,以及小鼠和人类大脑,这强烈暗示着我们关于如何
该过程在C中操作。秀丽线虫将在物种之间广泛相关,包括提供难以捉摸的信息。
在神经退行性疾病中在人脑中运作的传播机制。
我们建议充分利用C. elegans模型(透明体,易遗传
操纵,精细定义的神经系统,强大的细胞生物学,短寿命),以推进基础
了解外泌体生物学我们的目标是确定遗传和细胞生物学机制
在外泌体形成中起作用,重点是外泌体发生中的细胞骨架作用:1)定义遗传
以及介导外泌体形成的微管动力学的细胞生物学机制; 2)解决
神经元完成分裂,释放出一个大的聚集体填充的结构域,留下一个完整的神经元。
我们的工作应该告知一个新的途径蛋白质稳态控制相关的健康的大脑老化,
神经退行性疾病,定义了一个新的研究领域和临床干预措施的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MONICA A. DRISCOLL其他文献
MONICA A. DRISCOLL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MONICA A. DRISCOLL', 18)}}的其他基金
Molecular Underpinnings of Enduring Exercise Benefits
持久运动益处的分子基础
- 批准号:
10545757 - 财政年份:2022
- 资助金额:
$ 63.59万 - 项目类别:
Molecular Underpinnings of Enduring Exercise Benefits
持久运动益处的分子基础
- 批准号:
10388673 - 财政年份:2022
- 资助金额:
$ 63.59万 - 项目类别:
Defining roles of genetic and age in extracellular elimination of neurotoxic aggregates
确定遗传和年龄在细胞外消除神经毒性聚集体中的作用
- 批准号:
10813264 - 财政年份:2017
- 资助金额:
$ 63.59万 - 项目类别:
Defining roles of genetic and age in extracellular elimination of neurotoxic aggregates
确定遗传和年龄在细胞外消除神经毒性聚集体中的作用
- 批准号:
9905340 - 财政年份:2017
- 资助金额:
$ 63.59万 - 项目类别:
Defining roles of genetic and age in extracellular elimination of neurotoxic aggregates
确定遗传和年龄在细胞外消除神经毒性聚集体中的作用
- 批准号:
10405724 - 财政年份:2017
- 资助金额:
$ 63.59万 - 项目类别:
Defining roles of genetic and age in extracellular elimination of neurotoxic aggregates
确定遗传和年龄在细胞外消除神经毒性聚集体中的作用
- 批准号:
10597235 - 财政年份:2017
- 资助金额:
$ 63.59万 - 项目类别:
Dissecting mechanisms of mitochondiral extrusion from C. elegans neurons
剖析线虫神经元线粒体挤出的机制
- 批准号:
9462368 - 财政年份:2017
- 资助金额:
$ 63.59万 - 项目类别:
Defining Roles of Genetics and Age in Extrusion of Neurotoxic Aggregates
定义遗传和年龄在神经毒性聚集体排出中的作用
- 批准号:
10621615 - 财政年份:2017
- 资助金额:
$ 63.59万 - 项目类别:
Genetic Dissection of Mechanisms by Which Exercise Promotes Systemic Health
运动促进全身健康机制的基因剖析
- 批准号:
9925167 - 财政年份:2016
- 资助金额:
$ 63.59万 - 项目类别:
Genetic Dissection of Mechanisms by Which Exercise Promotes Systemic Health
运动促进全身健康机制的基因剖析
- 批准号:
9360536 - 财政年份:2016
- 资助金额:
$ 63.59万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 63.59万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 63.59万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 63.59万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 63.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 63.59万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 63.59万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 63.59万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 63.59万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 63.59万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 63.59万 - 项目类别:
Postdoctoral Fellowships