RUI: Structural and Dynamical Specializations of Axons that Enhance Neural Coincidence Detection

RUI:增强神经重合检测的轴突的结构和动力学特化

基本信息

  • 批准号:
    1951436
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Highly specialized cells process and transmit information throughout the brain. This project aims to develop mathematical models and theory to illuminate how neurons in the auditory system process sounds with exquisite temporal precision. Using an original modeling framework that allows systematic and parametric control of spike-generating regions of neurons, the project will explore relations between structure, dynamics, and function in an important stage of auditory processing: neurons in the auditory brainstem that encode the spatial locations of sound sources. These neurons are coincidence detectors – they are sensitive to the timing of inputs and respond maximally to inputs that arrive with near simultaneity. One prong of the research contributes to the advancement of public health by considering how pathological changes in neuron structure may degrade temporal processing in individuals with hearing loss. An essential component of the project is the mathematical and scientific training of undergraduate students. Students will engage in unique summer research experiences, gain knowledge working at the interface of mathematics and neuroscience, and contribute to a vibrant research environment at an undergraduate-only institution.The project develops new mathematical approaches to modeling of neural coincidence detection. The first objective is to develop multi-compartment models of soma-to-axon coupling to quantify how coincidence detection sensitivity may be enhanced in neural structures with multiple sites of spike generation along the axon. The focus will be on creating low-dimensional models (with few spatial compartments) that preserve essential dynamical properties of these neurons and that elucidate how the site of spike initiation enhances coincidence detection sensitivity. The second objective is to dissect the dynamical mechanisms by which neurons process temporal information in high-frequency signals. The focus here will be on coincidence detector neurons in the brainstems of birds. These neurons respond to inputs that generate small amplitude voltage oscillations at kilohertz-scale frequencies. The goal of this work is to develop novel mathematical theory to account for how neurons extract temporal information from oscillations at speeds similar to, or faster than, intrinsic neuronal time-scales. The third objective is to assess (with simulations) how pathological changes to axon structure during hearing loss may degrade coincidence detection sensitivity in the case of "electric hearing" with cochlear implants. By investigating neural coincidence detection in a variety of contexts, the project will contribute to the general understanding of nonlinear neural dynamics and temporal processing in neural circuits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高度特化的细胞在整个大脑中处理和传递信息。该项目旨在建立数学模型和理论,以阐明听觉系统中的神经元如何以精致的时间精度处理声音。使用原始的建模框架,允许系统和参数控制神经元的尖峰产生区域,该项目将探索听觉处理的一个重要阶段的结构,动力学和功能之间的关系:听觉脑干中的神经元编码声源的空间位置。这些神经元是巧合探测器——它们对输入的时间很敏感,并对几乎同时到达的输入做出最大的反应。该研究的一个方面是通过考虑神经元结构的病理变化如何降低听力损失患者的时间处理,从而促进公众健康。该项目的一个重要组成部分是对本科生的数学和科学训练。学生将参与独特的暑期研究经历,在数学和神经科学的界面上获得知识,并为本科院校充满活力的研究环境做出贡献。该项目开发了新的数学方法来建模神经巧合检测。第一个目标是建立多室体-轴突耦合模型,以量化在沿轴突产生多位点的神经结构中如何增强重合检测灵敏度。重点将是创建低维模型(具有很少的空间间隔),以保留这些神经元的基本动态特性,并阐明刺突起始位置如何增强巧合检测灵敏度。第二个目标是剖析神经元在高频信号中处理时间信息的动力机制。这里的重点将放在鸟类脑干中的巧合检测器神经元上。这些神经元对产生千赫兹频率的小振幅电压振荡的输入作出反应。这项工作的目标是发展新的数学理论,以解释神经元如何以与固有神经元时间尺度相似或更快的速度从振荡中提取时间信息。第三个目标是评估(通过模拟)在植入人工耳蜗的“电听力”情况下,听力损失期间轴突结构的病理变化如何降低重合检测的灵敏度。通过研究各种情况下的神经巧合检测,该项目将有助于对非线性神经动力学和神经回路中的时间处理的一般理解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Goldwyn其他文献

Joshua Goldwyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Structural Properties of Measurable and Topological Dynamical Systems
可测量和拓扑动力系统的结构性质
  • 批准号:
    2348315
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
  • 批准号:
    10709399
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Dynamical-nonequilibrium simulations: an emerging approach to study time-dependent structural changes in proteins
动态非平衡模拟:研究蛋白质随时间变化的结构变化的新兴方法
  • 批准号:
    BB/X009831/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Fellowship
A structural, kinematical, dynamical and thermodynamical study of galactic gas complexes
星系气体复合体的结构、运动学、动力学和热力学研究
  • 批准号:
    RGPIN-2019-05251
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
A structural, kinematical, dynamical and thermodynamical study of galactic gas complexes
星系气体复合体的结构、运动学、动力学和热力学研究
  • 批准号:
    RGPIN-2019-05251
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
A structural, kinematical, dynamical and thermodynamical study of galactic gas complexes
星系气体复合体的结构、运动学、动力学和热力学研究
  • 批准号:
    RGPIN-2019-05251
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
A structural, kinematical, dynamical and thermodynamical study of galactic gas complexes
星系气体复合体的结构、运动学、动力学和热力学研究
  • 批准号:
    RGPIN-2019-05251
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Photoelectron interferometry as a structural and dynamical probe
光电子干涉测量作为结构和动力学探针
  • 批准号:
    EP/R010447/1
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Structural and Dynamical Determinants of Influenza Transmissibility
流感传播性的结构和动力学决定因素
  • 批准号:
    1811685
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Photoelectron interferometry as a structural and dynamical probe
光电子干涉测量作为结构和动力学探针
  • 批准号:
    EP/R010609/1
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了