Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
基本信息
- 批准号:10709399
- 负责人:
- 金额:$ 38.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdsorptionAgingAlzheimer&aposs DiseaseAminesBiologicalBone DiseasesCarbohydratesCardiovascular DiseasesChronic Kidney FailureCollagenComputing MethodologiesDNADNA-protein crosslinkDataDehydrationDevelopmentDiabetes MellitusDiseaseElastinEnvironmentFoundationsGenetic Complementation TestGlucoseGoalsHydration statusInterventionKnowledgeLengthLocationMediatingMetastatic Neoplasm to the BoneMicroscopicMissionModelingMolecularNational Institute of General Medical SciencesNatureNeoplasm MetastasisParkinson DiseasePathologicPathologyPost-Translational Protein ProcessingPreventionProcessProteinsProtocols documentationProxyReactionResearchRetinal DiseasesSideSiteSource CodeSystemTherapeuticTimeTissuesWateradductalpha synucleincrosslinkdensityelectric fieldexperimental studyglycationkinetic modelmacromoleculemineralizationmolecular dynamicsnucleobaseopen sourcequantumskin disordersugartheoriestherapeutic development
项目摘要
Project Summary
Non-enzymatic protein-protein and protein-DNA cross-links are deleterious post-translational
modifications that have been associated with many severe pathologies, including cancer metasta-
sis, retinopathy, chronic renal failure, skin and bone disorders, aging, diabetes, Alzheimer’s, Par-
kinson’s and cardiovascular diseases. However, the development of therapeutic strategies is hin-
dered by our poor understanding of their formation. We propose to address this gap in knowledge
using computational methods based on intrinsic electric field calculations. Our goal is to identify
the structural and dynamical molecular factors at the origin of the formation of non-enzymatic
protein-protein and protein-DNA cross-links. We focus our study on sugar-mediated cross-links,
initiated by glycation reactions, as it has been shown to occur in a broad range of systems.
We hypothesize that partial depletion of the protein (or DNA) hydration layer exposes side
chains (or nucleobases) to surrounding carbohydrates. This facilitates glycation reactions whereby
reducing sugars (glucose) react with the free amine groups. Glycated proteins and DNA then
have enhanced ability to form adducts, altering their biofunction. Our proposed research seeks
to provide a molecular interpretation of sugar-mediated cross-link formation and can be divided
into three thrusts ; each of which with the potential to expand into a standalone research direction.
First, we propose to characterize the density of the hydration layer of healthy and pathological
proteins and DNA strands known to aggregate (collagen, elastin and α-synuclein) at the quan-
tum level. Our preliminary data on mineralized collagen systems show that water adsorption is
controlled by the nature of the environment rather than the nature of the adsorption site, consistent
with experimental observations. This suggests that the density functional theory protocol we de-
veloped for this study is suitable for the characterization of macromolecule-water interactions.
Second, we propose to model carbohydrate reactivity in dehydrated and hydrated biomole-
cules, as a proxy for non-enzymatic glycation reactions. The novelty of our approach is to intro-
duce accurate reactivity information in classical molecular dynamics simulations using intrinsic
electric fields as a metric for bond formation. Our preliminary data verify the feasibility of such
study and include the development of an open-source code that allows this type of calculations.
Finally, we propose to integrate our atomistic data into a microscopic kinetic model of protein-
protein and protein-DNA cross-linking processes. With this model, we aim to predict the critical
density, location, cooperativity and strength of cross-links that are associated with known patho-
logies, paving the way towards the identification of therapeutic points of intervention.
项目摘要
非酶促蛋白质-蛋白质和蛋白质-DNA交联是有害的翻译后
与许多严重病理学相关的修饰,包括癌症转移,
姐妹、视网膜病、慢性肾衰竭、皮肤和骨骼疾病、衰老、糖尿病、阿尔茨海默氏病、Par-
金森氏症和心血管疾病然而,治疗策略的发展是hin-
我们对它们的形成缺乏了解。我们建议填补这一知识空白
使用基于本征电场计算的计算方法。我们的目标是确定
非酶促反应形成的结构和动力学分子因素
蛋白质-蛋白质和蛋白质-DNA交联。我们的研究重点是糖介导的交联,
由糖化反应引发,因为它已被证明发生在广泛的系统中。
我们假设蛋白质(或DNA)水化层的部分耗尽暴露了侧
链(或核碱基)与周围的碳水化合物。这促进了糖化反应,
还原糖(葡萄糖)与游离胺基反应。糖化蛋白质和DNA
增强了形成加合物的能力,改变了它们的生物功能。我们的研究旨在
以提供糖介导的交联形成的分子解释,并可分为
分为三个推力;其中每一个都有可能扩展到一个独立的研究方向。
首先,我们建议表征健康和病理水合层的密度
蛋白质和DNA链已知聚集(胶原蛋白,弹性蛋白和α-突触核蛋白),
旋转水平。我们对矿化胶原蛋白系统的初步数据表明,
由环境的性质而不是吸附位点的性质控制,
通过实验观察。这表明,密度泛函理论协议,我们德-
该方法适用于大分子-水相互作用的表征。
其次,我们建议在脱水和水合生物分子中模拟碳水化合物的反应性,
cules,作为非酶糖化反应的代表。我们的方法的新奇在于引入-
在经典的分子动力学模拟中使用内禀函数导出精确的反应性信息
电场作为键形成的度量。我们的初步数据验证了这种可行性
研究并包括开发允许这种计算的开源代码。
最后,我们建议将我们的原子数据整合到蛋白质的微观动力学模型中-
蛋白质和蛋白质-DNA交联过程。通过这个模型,我们的目标是预测关键的
密度、位置、协同性和与已知病理相关的交联强度,
逻辑,为确定治疗干预点铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerie Vaissier Welborn其他文献
Valerie Vaissier Welborn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
蕲艾药渣衍生炭的孔道和表面功能化及其农药吸附性能与机制研究
- 批准号:JCZRLH202500852
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载铁生物炭对土壤镉污染的吸附固定及微生物协同作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吸附位点的路易斯碱性调控及对In3+/Fe3+深度分离与选择性作用机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
木质素基单原子多孔碳材料的构筑及其吸附-降解农药污染物机制
- 批准号:2025JJ60186
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
细胞因子吸附治疗肠源性脓毒症的有效性及安全性研究
- 批准号:2025JJ81035
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于车辆坠水的外部救援吸附式破窗器的研发与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
电场定向极化多孔材料界面及其对四氟化碳选择性吸附机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
用于制冷机的金属有机框架复合材料智能循环吸水脱水性能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
circ_0000739经吸附miR-221-3p上调STMN1促进三阴性乳腺癌恶性生物学行为的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
铁铬共沉淀中铬吸附氧化的关键过程及
铁锰耦合作用机制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Grant-in-Aid for Scientific Research (S)