CDS&E-MSS: Causal learning and inference on complex observational data

CDS

基本信息

  • 批准号:
    1952929
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Learning the causal relations among a set of variables from given data is a fundamental problem in scientific research and engineering. Directed acyclic graphs (DAGs) are a popular class of mathematical models for causal networks, in which a directed link encodes a cause-effect relation between two variables. Although experimental intervention provides a direct means to causal inference, such experiments are often not available or limited in many domains. Consequently, structure learning of causal networks from observational data is an important and active research area in statistics and data science. This project targets a few notorious difficulties in causal network learning from observational data, namely the high-dimensionality, nonlinearity and potential dependence in the data. Novel statistical methods and theory for causal structure learning and causal inference will be developed to overcome these difficulties. Software packages will be released to provide efficient implementation of the methods and algorithms. To handle high-dimensionality, instead of estimating the structure of a full DAG, the PI will develop a set of methods for local structure learning that identifies the causal parents of target variables, followed by causal effect estimation given the estimated parent sets. Leveraging recent identifiability results for nonlinear and non-Gaussian DAGs, a sequential Monte Carlo method will be developed to sample causal orders and to estimate the joint intervention effects of a set of variables given a partial causal ordering. To accommodate data dependence among individuals, the DAG model will be generalized to network data via the Kronecker product of graphical models. An algorithm will be developed to estimate parameters and DAG structure under this new model, which iterates between a de-correlation step to remove data dependence and a DAG learning step by a standard method. Theoretical results will be established for the local structure and causal order estimation methods and to justify the de-correlation approach. The project integrates structure learning of graphical models, Monte Carlo methods, nonconvex optimization, nonparametric regression, and conditional independence test into causal discovery and inference on observational data. Moreover, many components in this project are well-motivated by recent single-cell RNA-sequencing data and the construction of causal networks for gene regulation. Application of the methods to the fast accumulating single-cell RNA-sequencing data will produce reliable and accurate inference for the causality of gene expression, which is a fundamental problem in molecular biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从给定的数据中学习一组变量之间的因果关系是科学研究和工程中的一个基本问题。有向无环图(dag)是一类流行的因果网络数学模型,其中有向链接编码两个变量之间的因果关系。虽然实验干预提供了因果推理的直接手段,但这种实验在许多领域往往不可用或受到限制。因此,从观测数据中学习因果网络的结构是统计学和数据科学中一个重要而活跃的研究领域。该项目针对从观测数据中学习因果网络的几个众所周知的困难,即数据的高维性、非线性和潜在依赖性。新的统计方法和理论的因果结构学习和因果推理将发展克服这些困难。将发布软件包,以提供方法和算法的有效实现。为了处理高维,PI将开发一套用于局部结构学习的方法,以识别目标变量的因果父变量,然后根据估计的父变量集进行因果效应估计,而不是估计完整DAG的结构。利用最近非线性和非高斯dag的可识别性结果,将开发一种顺序蒙特卡罗方法来采样因果顺序并估计给定部分因果顺序的一组变量的联合干预效果。为了适应个体之间的数据依赖性,DAG模型将通过图形模型的Kronecker积推广到网络数据。在该模型下,将开发一种算法来估计参数和DAG结构,该算法在去相关步骤(去除数据依赖)和DAG学习步骤(采用标准方法)之间迭代。将建立局部结构和因果顺序估计方法的理论结果,并证明去相关方法的合理性。该项目将图形模型的结构学习、蒙特卡罗方法、非凸优化、非参数回归和条件独立检验集成到观测数据的因果发现和推理中。此外,该项目中的许多组成部分受到最近单细胞rna测序数据和基因调控因果网络构建的良好激励。将该方法应用于快速积累的单细胞rna测序数据,将为基因表达的因果关系提供可靠和准确的推断,这是分子生物学的一个基本问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian causal bandits with backdoor adjustment prior
具有后门调整先验的贝叶斯因果老虎机
Learning big Gaussian Bayesian networks: partition, estimation, and fusion
学习大型高斯贝叶斯网络:划分、估计和融合
On perfectness in Gaussian graphical models
论高斯图模型的完美性
Causal network learning with non-invertible functional relationships
  • DOI:
    10.1016/j.csda.2020.107141
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingling Wang;Qing Zhou
  • 通讯作者:
    Bingling Wang;Qing Zhou
Partitioned hybrid learning of Bayesian network structures
贝叶斯网络结构的分区混合学习
  • DOI:
    10.1007/s10994-022-06145-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Huang, Jireh;Zhou, Qing
  • 通讯作者:
    Zhou, Qing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qing Zhou其他文献

Effects of booster seat sliding on responses and injuries of child occupant
加高座椅滑动对儿童乘员反应和伤害的影响
Mitochondrial dysfunction caused by SIRT3 inhibition drives pro-inflammatory macrophage polarization in obesity
SIRT3 抑制引起的线粒体功能障碍驱动肥胖中促炎巨噬细胞极化
  • DOI:
    10.1002/oby.23707
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Qing Zhou;Yuyan Wang;Zongshi Lu;Bowen Wang;Li Li;Mei You;Lijuan Wang;Tingbing Cao;Yu Zhao;Qiang Li;Aidi Mou;Wentao Shu;Hongbo He;Zhigang Zhao;Daoyan Liu;Zhiming Zhu;Peng Gao;Zhencheng Yan
  • 通讯作者:
    Zhencheng Yan
Differential expression of CD300a/c on human TH1 and TH17 cells
CD300a/c在人TH1和TH17细胞上的差异表达
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3
  • 作者:
    V. R. Simhadri;John L. Mariano;Qing Zhou;K. Debell;F. Borrego
  • 通讯作者:
    F. Borrego
Shape controlled flower-like silicon oxide nanowires and their pH response
形状控制的花状氧化硅纳米线及其 pH 响应
  • DOI:
    10.1016/j.apsusc.2011.01.038
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Qi Shao;R. Que;Mingwang Shao;Qing Zhou;D. Ma;Shuitong Lee
  • 通讯作者:
    Shuitong Lee
HER2 Activation Factors in Arsenite-Exposed Bladder Epithelial Cells
亚砷酸盐暴露的膀胱上皮细胞中的 HER2 激活因子
  • DOI:
    10.1093/toxsci/kfy202
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Peiyu Jin;Jieyu Liu;Xiaoyan Wang;Li Yang;Qing Zhou;Xiaoli Lin;Shuhua Xi
  • 通讯作者:
    Shuhua Xi

Qing Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qing Zhou', 18)}}的其他基金

CDS&E-MSS: Causal Induction in Sequential Decision Processes
CDS
  • 批准号:
    2305631
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Learning Big Bayesian Networks
BIGDATA:F:学习大贝叶斯网络
  • 批准号:
    1546098
  • 财政年份:
    2015
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Monte Carlo methods for complex multimodal distributions with applications in Bayesian inference
复杂多峰分布的蒙特卡罗方法及其在贝叶斯推理中的应用
  • 批准号:
    1308376
  • 财政年份:
    2013
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Sparse Modeling Driven by Large-Scale Genomic Data
职业:大规模基因组数据驱动的稀疏建模
  • 批准号:
    1055286
  • 财政年份:
    2011
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Statistical Methods for Integrated Gene Regulation Analyses
综合基因调控分析的统计方法
  • 批准号:
    0805491
  • 财政年份:
    2008
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

靶向Pin1改善MSS型结直肠癌免疫抑制微环境的分子机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
鼠李糖乳杆菌通过诱导巨噬细胞M1极化改善MSS型结直肠癌免疫应答的机制研究
  • 批准号:
    QN25H160091
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
电针激活β-arrestin 1/IFN通路促进“冷-热”免疫表型转化协同IDO抑制剂治疗MSS肠癌的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
千金藤素通过自噬损伤导致的免疫原性细胞死亡促进 anti-PD1 治疗MSS 型结直肠癌的疗效与机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于糖醛酸离子交联的枸杞多糖凝胶用于口服结肠靶向递药抗 MSS 型结肠癌研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
调控pMMR/MSS型直肠癌放疗联合ICIs治疗响应差异的免疫微环境机制研究
  • 批准号:
    2024Y9290
  • 批准年份:
    2024
  • 资助金额:
    30.0 万元
  • 项目类别:
    省市级项目
AIM2 炎症小体调控 T 细胞功能及互作在促进 MSS 型直肠癌放疗联合 PD-1 抑 制剂治疗敏感性中的作用及机制研究
  • 批准号:
    24ZR1413300
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
MSS型结直肠癌通过抑制GSDMB依赖的细胞焦亡介导免疫治疗耐受的机制研究
  • 批准号:
    2024Y9636
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
电针激活β-arrestin 1/IFN通路促进"冷-热"免疫表型转化协同IDO抑制剂治疗MSS肠癌的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2245380
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CDS&E-MSS: Data thinning: methods, theory, and applications
CDS
  • 批准号:
    2322920
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CDS&E-MSS: Sparsely Activated Bayesian Neural Networks from Deep Gaussian Processes
CDS
  • 批准号:
    2312173
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CDS&E-MSS: Causal Induction in Sequential Decision Processes
CDS
  • 批准号:
    2305631
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2245381
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CDS&E-MSS: Topological Learning with Multiparameter Persistent Homology
CDS
  • 批准号:
    2324353
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2401020
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Deep Network Compression and Continual Learning: Theory and Application
合作研究:CDS
  • 批准号:
    2053448
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
CDS&E-MSS: Optimal Recovery in the Age of Data Science
CDS
  • 批准号:
    2053172
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Deep Network Compression and Continual Learning: Theory and Application
合作研究:CDS
  • 批准号:
    2053480
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了