Statistical Methods for Integrated Gene Regulation Analyses

综合基因调控分析的统计方法

基本信息

  • 批准号:
    0805491
  • 负责人:
  • 金额:
    $ 13.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The fast development in statistical methodology is mostly driven by the necessity to describe, model and analyze complex large-scale data sets generated from various scientific and engineering disciplines. In order to make full use of available and incoming large amount of data in gene regulation, this proposal aims (1) to develop predictive modeling approaches to combine sequence analyses, gene expression data, and protein binding data; and (2) to develop a full Bayesian model for de novo identification of cis-regulatory modules (combinatorial patterns of multiple sequence motifs that mediate the interactions between regulatory proteins and DNA sequences) in multiple related species. For the first project, the use of many contemporary statistical learning methods is investigated, such as boosting, random forests, MARS and BART, for detecting influential sequence signals and predicting protein-DNA interactions. Multi-level models are proposed to incorporate the uncertainty in covariates into a statistical learning framework and efficient computational algorithms are developed for the inference. The statistical aspects of the second project involve modeling multiple interacting stochastic processes by coupling chains of random variables. Efficient algorithms that utilize two-dimensional dynamic programming and advanced Monte Carlo techniques such as tempering and equi-energy jumps are developed for the challenging Bayesian inference on the proposed model.The proposed research is expected to have direct and immediate impact on various fields in molecular biology, genetics, and medical sciences, in which gene regulation analyses play critical roles. In addition to methodological development, algorithms and software will be delivered for biologists to use on their own experimental data. Many statistical components in these projects, such as the coupling of hidden Markov models and the design of advanced Monte Carlo sampling with dynamic programming, are expected to contribute significantly to statistics and other computational sciences as well.
统计方法的快速发展主要是由描述,建模和分析从各种科学和工程学科产生的复杂大规模数据集的必要性驱动的。为了充分利用基因调控中现有的和输入的大量数据,本提案的目标是(1)开发预测建模方法,以结合联合收割机序列分析、基因表达数据和蛋白质结合数据;以及(2)建立一个完整的贝叶斯模型,用于从头鉴定顺式调控模块(介导调节蛋白和DNA序列之间相互作用的多个序列基序的组合模式)。在第一个项目中,研究了许多当代统计学习方法的使用,例如boosting,随机森林,MARS和BART,用于检测有影响力的序列信号和预测蛋白质-DNA相互作用。提出了多层次模型,将协变量的不确定性纳入统计学习框架,并开发了有效的计算算法进行推理。第二个项目的统计学方面涉及通过随机变量的耦合链来模拟多个相互作用的随机过程。利用二维动态规划和先进的Monte Carlo技术,如回火和等能量跳跃的高效算法被开发为具有挑战性的贝叶斯推理的建议model.The拟议的研究预计将有直接和即时的影响,在分子生物学,遗传学和医学科学的各个领域,基因调控分析发挥关键作用。除了方法学的发展,算法和软件将提供给生物学家使用自己的实验数据。这些项目中的许多统计组件,如隐马尔可夫模型的耦合和先进的蒙特卡罗抽样与动态规划的设计,预计将大大有助于统计和其他计算科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qing Zhou其他文献

Effects of booster seat sliding on responses and injuries of child occupant
加高座椅滑动对儿童乘员反应和伤害的影响
Mitochondrial dysfunction caused by SIRT3 inhibition drives pro-inflammatory macrophage polarization in obesity
SIRT3 抑制引起的线粒体功能障碍驱动肥胖中促炎巨噬细胞极化
  • DOI:
    10.1002/oby.23707
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Qing Zhou;Yuyan Wang;Zongshi Lu;Bowen Wang;Li Li;Mei You;Lijuan Wang;Tingbing Cao;Yu Zhao;Qiang Li;Aidi Mou;Wentao Shu;Hongbo He;Zhigang Zhao;Daoyan Liu;Zhiming Zhu;Peng Gao;Zhencheng Yan
  • 通讯作者:
    Zhencheng Yan
Differential expression of CD300a/c on human TH1 and TH17 cells
CD300a/c在人TH1和TH17细胞上的差异表达
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3
  • 作者:
    V. R. Simhadri;John L. Mariano;Qing Zhou;K. Debell;F. Borrego
  • 通讯作者:
    F. Borrego
Shape controlled flower-like silicon oxide nanowires and their pH response
形状控制的花状氧化硅纳米线及其 pH 响应
  • DOI:
    10.1016/j.apsusc.2011.01.038
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Qi Shao;R. Que;Mingwang Shao;Qing Zhou;D. Ma;Shuitong Lee
  • 通讯作者:
    Shuitong Lee
HER2 Activation Factors in Arsenite-Exposed Bladder Epithelial Cells
亚砷酸盐暴露的膀胱上皮细胞中的 HER2 激活因子
  • DOI:
    10.1093/toxsci/kfy202
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Peiyu Jin;Jieyu Liu;Xiaoyan Wang;Li Yang;Qing Zhou;Xiaoli Lin;Shuhua Xi
  • 通讯作者:
    Shuhua Xi

Qing Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qing Zhou', 18)}}的其他基金

CDS&E-MSS: Causal Induction in Sequential Decision Processes
CDS
  • 批准号:
    2305631
  • 财政年份:
    2023
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Continuing Grant
CDS&E-MSS: Causal learning and inference on complex observational data
CDS
  • 批准号:
    1952929
  • 财政年份:
    2020
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Standard Grant
BIGDATA: F: Learning Big Bayesian Networks
BIGDATA:F:学习大贝叶斯网络
  • 批准号:
    1546098
  • 财政年份:
    2015
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Standard Grant
Monte Carlo methods for complex multimodal distributions with applications in Bayesian inference
复杂多峰分布的蒙特卡罗方法及其在贝叶斯推理中的应用
  • 批准号:
    1308376
  • 财政年份:
    2013
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Standard Grant
CAREER: Sparse Modeling Driven by Large-Scale Genomic Data
职业:大规模基因组数据驱动的稀疏建模
  • 批准号:
    1055286
  • 财政年份:
    2011
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Methods for Improving Real-Time Public Health Surveillance and Integrated Outbreak Detection
改进实时公共卫生监测和综合疫情检测的统计方法
  • 批准号:
    10682401
  • 财政年份:
    2022
  • 资助金额:
    $ 13.88万
  • 项目类别:
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
  • 批准号:
    10445698
  • 财政年份:
    2022
  • 资助金额:
    $ 13.88万
  • 项目类别:
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
  • 批准号:
    10685565
  • 财政年份:
    2022
  • 资助金额:
    $ 13.88万
  • 项目类别:
Statistical Methods for Improving Real-Time Public Health Surveillance and Integrated Outbreak Detection
改进实时公共卫生监测和综合疫情检测的统计方法
  • 批准号:
    10535624
  • 财政年份:
    2022
  • 资助金额:
    $ 13.88万
  • 项目类别:
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
  • 批准号:
    1661802
  • 财政年份:
    2016
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
  • 批准号:
    1264058
  • 财政年份:
    2013
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
  • 批准号:
    1263932
  • 财政年份:
    2013
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
  • 批准号:
    1264033
  • 财政年份:
    2013
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Continuing Grant
Development of Statistical Performance Analysis and Optimization Methods for Large Scale Integrated Circuits
大规模集成电路统计性能分析和优化方法的发展
  • 批准号:
    11555095
  • 财政年份:
    1999
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrated Planning Under Uncertainty: Statistical Methods in Mathematical Programming
不确定性下的综合规划:数学规划中的统计方法
  • 批准号:
    9414680
  • 财政年份:
    1994
  • 资助金额:
    $ 13.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了