All Optical, Tunable THz Magnonic Devices
所有光学、可调谐太赫兹磁力器件
基本信息
- 批准号:1952957
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The terahertz portion of the spectrum is the challenging boundary region between higher frequency optical (infra-red) technology and the microwave realm. The terahertz spectrum offers many potential advantages across a range of applications and industries, including communications and information technology, biological imaging and health sciences, chemical sensing and other security applications, and even spaceborne astronomy. This project will examine the fundamental properties of a class of materials called ferrimagnets and use those materials in novel ways to develop a new kind of terahertz source for very high speed communications and information processing applications. This project will examine the properties of ferrimagnets in thin films, at different temperatures and at very high magnetic fields. Furthermore, the unique qualities of ferrimagnets will be used in a novel magnetic device that achieves unprecedented speed by using extremely short pulses of light to excite motion of the magnetic properties of the ferrimagnet. The scientific understanding of the fundamental properties of these materials and their implementation in devices is crucial for the next generation of magnetic devices and ultra-high speed information technology that supports the evolving 21st century digital economy. The research will support two graduate students from under-represented groups in Physics, will expose up to six undergraduates in advanced research, and will help foster collaboration with the graduate program of a Minority Serving Institution.One promising approach to realize practical terahertz (THz) electronics relies on spintronics, which extends and amplifies the properties of conventional electronics via the manipulation of electron spin. The proposed novel device architecture will significantly narrow the bandwidth of spintronic THz sources of while also providing for wide tunability of the carrier frequency. The core of the proposed device is a magnetic tri-layer system consisting of a Polarizer layer, a non-magnetic spin transport layer, and an Emitter layer, all grown on optically transparent substrates. The THz carrier frequency is governed by spin wave modes in the Emitter layer and the frequency of the spin waves is determined by magnetic properties (saturation magnetization, g-factor, spin wave stiffness, etc.) of the Emitter. Ferrimagnetic materials enable a very large degree of control of magnetic properties of the Emitter and hence in the frequency of the THz emission. The THz scale dynamics of these prototype all-optical devices will be studied with fs time-resolved magneto-optic Kerr effect [tr-MOKE] and slower spin dynamics will be investigated with ferromagnetic resonance [FMR]. Moreover, the ferrimagnetic dynamics will be examined in detail using element-specific spectroscopic techniques (x-ray detected FMR [X-FMR] and fs-scale high harmonic generation [HHG]). The research will address three fundamental issues: (1) Understanding in detail the competing exchange interactions that give ferrimagnets their unique properties; (2) Harnessing these properties for the improvement of spintronic THz emitters; and (3) Modifying the THz-scale magnetic response using extreme magnetic fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
频谱的太赫兹部分是高频光学(红外)技术和微波领域之间具有挑战性的边界区域。 太赫兹频谱在一系列应用和行业中提供了许多潜在的优势,包括通信和信息技术,生物成像和健康科学,化学传感和其他安全应用,甚至是星载天文学。 该项目将研究一类称为亚铁磁体的材料的基本特性,并以新颖的方式使用这些材料来开发一种新型的太赫兹源,用于非常高速的通信和信息处理应用。 这个项目将研究薄膜中的亚铁磁体在不同温度和非常高的磁场下的特性。 此外,亚铁磁体的独特品质将用于一种新型磁性设备,该设备通过使用极短的光脉冲来激发亚铁磁体的磁性运动,从而实现前所未有的速度。对这些材料的基本性质及其在设备中的实现的科学理解对于支持不断发展的21世纪数字经济的下一代磁性设备和超高速信息技术至关重要。 该研究将支持两名来自物理学领域代表性不足的研究生,将在高级研究中展示多达六名本科生,并将有助于促进与少数民族服务机构研究生课程的合作。实现实用太赫兹(THz)电子学的一种有前途的方法依赖于自旋电子学,它通过操纵电子自旋来扩展和放大传统电子学的特性。 所提出的新型器件架构将显着缩小自旋电子太赫兹源的带宽,同时还提供了宽的载波频率的可调谐性。 所提出的设备的核心是一个磁性三层系统,包括一个偏振层,一个非磁性自旋传输层,和一个Escores层,所有的光学透明基板上生长。THz载波频率由E3层中的自旋波模式决定,并且自旋波的频率由磁特性(饱和磁化强度、g因子、自旋波刚度等)确定。关于Efos 铁磁材料使得能够在很大程度上控制电磁铁的磁特性,从而控制太赫兹发射的频率。这些原型全光器件的太赫兹尺度动力学将与fs时间分辨磁光克尔效应[tr-MOKE]和较慢的自旋动力学将与铁磁共振[FMR]进行研究。此外,将使用特定元素的光谱技术(X射线检测的FMR [X-FMR]和fs尺度高次谐波产生[HHG])详细检查亚铁磁动力学。研究将解决三个基本问题:(1)详细了解竞争交换相互作用,使亚铁磁体的独特性质:(2)利用这些性质的自旋电子太赫兹发射器的改进;(3)对THz-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elastically induced magnetization at ultrafast time scales in a chiral helimagnet
- DOI:10.1103/physrevb.106.035103
- 发表时间:2022-07
- 期刊:
- 影响因子:3.7
- 作者:Hengzhou Liu;M. Trinh;E. M. Clements;D. Sapkota;Ling Li;Zachary Romestan;S. Bhat;V. Mapara;A. Barua;Samuel Langelund Carrera;M. Phan;D. Arena;H. Srikanth;D. Mandrus;A. Romero;D. Karaiskaj
- 通讯作者:Hengzhou Liu;M. Trinh;E. M. Clements;D. Sapkota;Ling Li;Zachary Romestan;S. Bhat;V. Mapara;A. Barua;Samuel Langelund Carrera;M. Phan;D. Arena;H. Srikanth;D. Mandrus;A. Romero;D. Karaiskaj
Enhanced optical mode coherence in exchange coupled soft magnetic multilayers
- DOI:10.1063/5.0093827
- 发表时间:2022-06
- 期刊:
- 影响因子:3.2
- 作者:H. Liu;Agne Ciuciulkaite;V. Kapaklis;D. Karaiskaj;D. Arena
- 通讯作者:H. Liu;Agne Ciuciulkaite;V. Kapaklis;D. Karaiskaj;D. Arena
Macrospin model of an assembly of magnetically coupled core-shell nanoparticles
磁耦合核壳纳米颗粒组装体的宏观自旋模型
- DOI:10.1103/physrevb.106.104402
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Kons, Corisa;Srikanth, Hariharan;Phan, Manh-Huong;Arena, D. A.;Pereiro, Manuel
- 通讯作者:Pereiro, Manuel
Observation of coherently coupled cation spin dynamics in an insulating ferrimagnetic oxide
绝缘亚铁磁氧化物中相干耦合阳离子自旋动力学的观察
- DOI:10.1063/5.0141869
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Klewe, C.;Shafer, P.;Shoup, J. E.;Kons, C.;Pogoryelov, Y.;Knut, R.;Gray, B. A.;Jeon, H. -M.;Howe, B. M.;Karis, O.
- 通讯作者:Karis, O.
Sputter Gas Damage in Nanolayered Pt/Co/Ir-based Synthetic Antiferromagnets for Top-Pinned Magnetic Tunnel Junctions
- DOI:10.1021/acsanm.2c03917
- 发表时间:2022-12
- 期刊:
- 影响因子:5.9
- 作者:C. Taylor;Marzieh Savadkoohi;Pawan Tyagi;J. Shoup;D. Arena;J. Borchers;J. Eckert;D. Gopman
- 通讯作者:C. Taylor;Marzieh Savadkoohi;Pawan Tyagi;J. Shoup;D. Arena;J. Borchers;J. Eckert;D. Gopman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dario Arena其他文献
ELEMENT-SPECIFIC MAGNETIC PROPERTIES OF CO2MNSI THIN FILMS
CO2MSI 薄膜的元素特定磁性
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Stadler;D. Minott;D. Harley;J. Craig;Mahmud Tareq Hassan Khan;I. Dubenko;Naushad Ali;K. Story;J. Dvorak;Y. Idzerda;Dario Arena;Vincent G. Harris - 通讯作者:
Vincent G. Harris
Dario Arena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dario Arena', 18)}}的其他基金
Synthesis of and New Functionality in Heteroepitaxial Gallate / Ferrite Core@Shell Nanoparticles
异质外延没食子酸盐/铁氧体核@壳纳米粒子的合成及其新功能
- 批准号:
2327667 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似海外基金
Tunable THz Optoelectronic Tester
可调谐太赫兹光电测试仪
- 批准号:
433804753 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Major Research Instrumentation
A-LOTUS: ALl-Optical single-mode tunable THz sources in optical fiber Using DC FieldS
A-LOTUS:使用直流场的光纤中的 ALL-Optical 单模可调谐太赫兹源
- 批准号:
516492-2018 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Postdoctoral Fellowships
High-power tunable THz source ((2)-C10)
高功率可调谐太赫兹源 ((2)-C10)
- 批准号:
397038379 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
CRC/Transregios
A-LOTUS: ALl-Optical single-mode tunable THz sources in optical fiber Using DC FieldS
A-LOTUS:使用直流场的光纤中的 ALL-Optical 单模可调谐太赫兹源
- 批准号:
516492-2018 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Postdoctoral Fellowships
Development of a tunable THz source
可调谐太赫兹源的开发
- 批准号:
520662-2017 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
University Undergraduate Student Research Awards
Optically-Controlled Waveguide Architectures for Advanced Tunable and Reconfigurable THz Circuits
用于高级可调谐和可重构太赫兹电路的光控波导架构
- 批准号:
1711631 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
A THz beam steering device using tunable MEMS metamaterials
使用可调谐 MEMS 超材料的太赫兹光束控制装置
- 批准号:
15K17452 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A MEMS Tunable Resonator Array for THz Spatial Modulators
用于太赫兹空间调制器的 MEMS 可调谐谐振器阵列
- 批准号:
15H03984 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tunable Quantum Photoconductor for efficiency-enhanced THz switches (QPC-Switch)
用于提高效率的太赫兹开关的可调谐量子光电导体(QPC-Switch)
- 批准号:
276992184 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Research Grants
Tunable Continuous Wave THz Source Based on a Room Temperature Quantum Cascade Laser
基于室温量子级联激光器的可调谐连续波太赫兹源
- 批准号:
1306397 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant