Synthesis of and New Functionality in Heteroepitaxial Gallate / Ferrite Core@Shell Nanoparticles
异质外延没食子酸盐/铁氧体核@壳纳米粒子的合成及其新功能
基本信息
- 批准号:2327667
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical summary: Epitaxy in crystalline materials is the regular growth of one material on top of another, like the growth of a layer of yellow Lego bricks on top of several layers of red bricks. Strain occurs when the length of the two bricks is slightly different, so that the yellow layer grows with a slightly larger spacing (tensile strain) or slightly smaller (compressive). In two-dimensional thin films, epitaxial strain can produce dramatic variations in physical properties, but this type of epitaxial strain has been under-exploited in spherical nanoparticles and other nanostructures. Growing nanoparticles in a core / shell structure results in the combination of different physical properties, similar to how a candy comprised of a peanut covered with chocolate and hard sugar shell has a different flavor (a physical property) than a candy that is a solid piece of chocolate covered with the sugar shell. With support from the Solid State and Materials Chemistry program in the Division of Materials Research, Prof. Dario Arena and his team at the University of South Florida will explore core and shell materials with the same type of lattice structure, but very different physical properties. The core will be a type of oxide (zinc gallate) that has optical properties which are useful for biomedical imaging. The shell will be an iron oxide called magnetite and certain magnetic signatures of this material can be used to confirm epitaxial growth of the magnetite on the zinc gallate core. Realizing this combination of epitaxial optically-active cores and magnetically-sensitive shells opens up new possibilities for high-frequency electronics, gas sensing, environmental remediation, and biomedical applications that combine diagnostic + therapeutic capabilities in a single nanoparticle. Technical summary: Many minerals and other chemical compounds adopt the spinel structure in their atomic lattice. In this project, supported by the Solid State and Materials Chemistry program in the NSF’s Division of Materials Research, core / shell nanoparticles that combine two different types of oxide spinels will be chemically synthesized. Zinc gallate (ZnGa2O4) will form the core and magnetite (Fe3O4) will be the shell material. Zinc gallate and magnetite share the same spinel crystal structure which will enable the epitaxial growth of magnetite shell on the zinc gallate core. The zinc gallate will impart a compressive strain of 0.7% on the magnetite shell, which is still relatively weak. A high degree of epitaxy in the magnetite shell will be verified with temperature dependent magnetometry by identifying the Verwey transition (an abrupt drop in the sample magnetic moment) at ~105 K. Only samples with excellent crystallinity and which have the proper iron to oxygen ratio will exhibit the Verwey transition, and the magnetometry provides an efficient method of screening promising synthesis strategies. In samples that exhibit a sharp Verwey transition, the epitaxy will be verified with advanced electron microscopy, x-ray spectroscopy and scattering, and neutron scattering techniques. These combinations of spinel ferrites and gallates have not been grown before and the combination opens up new possibilities for high-frequency electronics, gas sensing, environmental remediation, and biomedical / theranostic (diagnostic + therapeutic) applications. The project will also support the PhD study of two graduate students and will help foster collaboration with the graduate program of a one or more Minority Serving Institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结:晶体材料的外延是一种材料在另一种材料上的规则生长,就像在几层红砖上生长一层黄色乐高积木。当两块砖的长度略有不同时,应变发生,因此黄色层以稍大的间距(拉伸应变)或稍小的间距(压缩)生长。在二维薄膜中,外延应变可以产生物理性质的显著变化,但这种类型的外延应变在球形纳米颗粒和其他纳米结构中尚未得到充分利用。在核/壳结构中生长纳米颗粒导致不同物理性质的组合,类似于由覆盖有巧克力和硬糖壳的花生组成的糖果与覆盖有糖壳的固体巧克力块的糖果具有不同的风味(物理性质)。 在材料研究部固态和材料化学项目的支持下,南佛罗里达大学的Dario竞技场教授和他的团队将探索具有相同类型晶格结构但物理性质截然不同的核和壳材料。 核心将是一种氧化物(锌镓酸盐),具有光学特性,可用于生物医学成像。 壳将是称为磁铁矿的铁氧化物,并且该材料的某些磁性特征可以用于确认镓酸锌核上的磁铁矿的外延生长。 实现外延光学活性核和磁敏壳的这种组合为高频电子、气体传感、环境修复和生物医学应用开辟了新的可能性,这些应用将联合收割机诊断+治疗能力结合在单个纳米颗粒中。技术概述:许多矿物和其他化合物在其原子晶格中采用尖晶石结构。 在这个项目中,由美国国家科学基金会材料研究部的固态和材料化学计划支持,将化学合成联合收割机结合两种不同类型的氧化物尖晶石的核/壳纳米颗粒。 锌镓酸盐(ZnGa 2 O 4)将形成核,磁铁矿(Fe 3 O 4)将是壳材料。 镓酸锌和磁铁矿具有相同的尖晶石晶体结构,这将使得磁铁矿壳在镓酸锌核上外延生长。镓酸锌将在磁铁矿壳上施加0.7%的压缩应变,这仍然相对较弱。 磁铁矿壳层中的高度外延将通过在~105 K下识别Verwey转变(样品磁矩的突然下降),用温度相关的磁力测定法进行验证。 只有具有优异的结晶度和具有适当的铁氧比的样品才会表现出Verwey转变,并且磁力测定法提供了筛选有前途的合成策略的有效方法。 在表现出尖锐的Verwey转变的样品中,外延将用先进的电子显微镜、X射线光谱和散射以及中子散射技术进行验证。 这些尖晶石铁氧体和镓酸盐的组合以前从未生长过,这种组合为高频电子、气体传感、环境修复和生物医学/治疗诊断(诊断+治疗)应用开辟了新的可能性。该项目还将支持两名研究生的博士研究,并将有助于促进与一个或多个少数民族服务机构的研究生课程的合作。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dario Arena其他文献
ELEMENT-SPECIFIC MAGNETIC PROPERTIES OF CO2MNSI THIN FILMS
CO2MSI 薄膜的元素特定磁性
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Stadler;D. Minott;D. Harley;J. Craig;Mahmud Tareq Hassan Khan;I. Dubenko;Naushad Ali;K. Story;J. Dvorak;Y. Idzerda;Dario Arena;Vincent G. Harris - 通讯作者:
Vincent G. Harris
Dario Arena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dario Arena', 18)}}的其他基金
All Optical, Tunable THz Magnonic Devices
所有光学、可调谐太赫兹磁力器件
- 批准号:
1952957 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Sulfonimidamides: New Frontiers in Stereochemistry and Functionality
磺酰亚胺:立体化学和功能性的新领域
- 批准号:
2247324 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Enabling New Functionality, Transport Analysis, and Deep Learning in Organ-on-a-Chip Systems
在器官芯片系统中实现新功能、传输分析和深度学习
- 批准号:
RGPIN-2019-05885 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Blueprint for Unlocking New Energy Conversion Functionality in Chalcogenide Frameworks through Precisely Designed Composition, Electronic Structure and Surface Coordination
职业:通过精确设计的成分、电子结构和表面配位解锁硫族化物框架中新能源转换功能的蓝图
- 批准号:
2044403 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
New functionality of turmeric starch
姜黄淀粉的新功能
- 批准号:
21K05482 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enabling New Functionality, Transport Analysis, and Deep Learning in Organ-on-a-Chip Systems
在器官芯片系统中实现新功能、传输分析和深度学习
- 批准号:
RGPIN-2019-05885 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Towards New Functionality in Dairy Ingredients
乳制品原料的新功能
- 批准号:
DP200100642 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
New Thermal Transport Functionality Based on Understanding of Heat Fluid Physics at Chemically Modified Porous Interfaces
基于对化学改性多孔界面热流体物理的理解的新热传输功能
- 批准号:
20H02085 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a new heat transport mechanism with autonomously variable heat transport direction by creating multi-functionality of porous materials
通过创建多孔材料的多功能性,开发具有自主可变热传输方向的新热传输机制
- 批准号:
20K04308 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enabling New Functionality, Transport Analysis, and Deep Learning in Organ-on-a-Chip Systems
在器官芯片系统中实现新功能、传输分析和深度学习
- 批准号:
RGPIN-2019-05885 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Transforming Growth Factor-β3: A Potential New Regulator of Heparan Sulfate Assembly and Functionality in Cancer
转化生长因子-β3:硫酸乙酰肝素组装和癌症功能的潜在新调节剂
- 批准号:
420160411 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Research Fellowships