Collaborative Research: Machine Learning Theory and Algorithms for Differential Games, with Applications in Economics
合作研究:微分博弈的机器学习理论和算法及其在经济学中的应用
基本信息
- 批准号:1953035
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) has been applied in many scientific fields, including imaging, computer vision, and materials science. However, the study of the application of AI to differential games and economics is still in its infancy. Differential games, as an offspring of game theory and optimal control, provide the modeling and analysis of conflicts in the context of a dynamical systems. Domains of applications include management science, economics, social science, biology, and national security. One of the core objectives is to compute Nash equilibria that refer to strategies by which no player has an incentive to deviate. The research aims to break the tractability barrier in computing these Nash equilibria by using, developing, and studying appropriate Machine Learning algorithms. The project also provides research training opportunities for graduate students. A major bottleneck comes from the notorious intractability of finite-player games, which makes the direct computation of Nash equilibria extremely time-consuming and memory demanding, especially for a large number of players. The problem of efficiently and accurately computing Nash equilibria for stochastic differential games with a finite number of heterogeneous players is addressed by developing play-based Deep Neural Networks algorithms. Infinite-player games will be solved by new Reinforcement Learning algorithms developed in the context of Mean Field Game theory for competitive games and Mean Field Control theory for cooperative games. Applications to economics and finance problems such as Systemic Risk and Investment/Consumption are considered.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)已应用于许多科学领域,包括成像,计算机视觉和材料科学。然而,人工智能在微分博弈和经济学中的应用研究仍处于起步阶段。微分对策作为对策论和最优控制的产物,提供了动态系统背景下冲突的建模和分析。应用领域包括管理科学、经济学、社会科学、生物学和国家安全。核心目标之一是计算纳什均衡,即没有参与者有动机偏离的策略。该研究旨在通过使用,开发和研究适当的机器学习算法来打破计算这些纳什均衡的易处理性障碍。该项目还为研究生提供研究培训机会。一个主要的瓶颈来自于众所周知的棘手的有限玩家游戏,这使得纳什均衡的直接计算非常耗时和内存需求,特别是对于大量的玩家。通过开发基于游戏的深度神经网络算法,解决了具有有限数量异构玩家的随机微分游戏的纳什均衡的有效和准确计算问题。无限玩家游戏将通过新的强化学习算法来解决,该算法是在竞争游戏的平均场游戏理论和合作游戏的平均场控制理论的背景下开发的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unified reinforcement Q-learning for mean field game and control problems
- DOI:10.1007/s00498-021-00310-1
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Andrea Angiuli;J. Fouque;M. Laurière
- 通讯作者:Andrea Angiuli;J. Fouque;M. Laurière
Systemic risk models for disjoint and overlapping groups with equilibrium strategies
具有均衡策略的不相交和重叠群体的系统风险模型
- DOI:10.1515/strm-2022-0004
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Feng, Yichen;Fouque, Jean-Pierre;Hu, Ruimeng;Ichiba, Tomoyuki
- 通讯作者:Ichiba, Tomoyuki
Recurrent neural networks for stochastic control problems with delay
- DOI:10.1007/s00498-021-00300-3
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Jiequn Han;Ruimeng Hu
- 通讯作者:Jiequn Han;Ruimeng Hu
Reinforcement Learning Algorithm for Mixed Mean Field Control Games
- DOI:10.4208/jml.220915
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Andrea Angiuli;Nils Detering;J. Fouque;M. Laurière;Jimin Lin
- 通讯作者:Andrea Angiuli;Nils Detering;J. Fouque;M. Laurière;Jimin Lin
Directed Chain Generative Adversarial Networks
有向链生成对抗网络
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ming Min, Ruimeng Hu
- 通讯作者:Ming Min, Ruimeng Hu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruimeng Hu其他文献
Learning High-Dimensional McKean-Vlasov Forward-Backward Stochastic Differential Equations with General Distribution Dependence
学习具有一般分布依赖性的高维 McKean-Vlasov 前向-后向随机微分方程
- DOI:
10.48550/arxiv.2204.11924 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jiequn Han;Ruimeng Hu;Jihao Long - 通讯作者:
Jihao Long
Accuracy Analysis of Physics-Informed Neural Networks for Approximating the Critical SQG Equation
用于逼近关键 SQG 方程的物理信息神经网络的精度分析
- DOI:
10.48550/arxiv.2401.10879 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
E. Abdo;Ruimeng Hu;Quyuan Lin - 通讯作者:
Quyuan Lin
Systemic risk and optimal fee for central clearing counterparty under partial netting
部分净额清算下中央清算对手方的系统性风险与最优费用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.1
- 作者:
Zhenyu Cui;Q. Feng;Ruimeng Hu;B. Zou - 通讯作者:
B. Zou
Asymptotic Optimal Strategy for Portfolio Optimization in a Slowly Varying Stochastic Environment
缓慢变化随机环境中投资组合优化的渐近最优策略
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
J. Fouque;Ruimeng Hu - 通讯作者:
Ruimeng Hu
Deep learning for ranking response surfaces with applications to optimal stopping problems
- DOI:
10.1080/14697688.2020.1741669 - 发表时间:
2019-01 - 期刊:
- 影响因子:1.3
- 作者:
Ruimeng Hu - 通讯作者:
Ruimeng Hu
Ruimeng Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant