CDS&E: Nanoconfined Heating via Ultrahigh-repetition-rate Lasers for Enhanced Surface Processing

CDS

基本信息

项目摘要

Pulsed laser processing is a manufacturing method that uses ultrafast laser pulses to precisely fabricate three-dimensional objects. Among the tunable parameters in pulsed laser processing, the laser repetition rate (the number of laser pulses per second) has only recently been recognized as essential for controlling the affected depth of laser ablation, sintering, and melting processes. This depth limit determines the resolution and efficiency of pulsed laser technologies for micro-/nano-electronics and aerospace and nuclear applications. This project aims to explore the minimum achievable depth when the laser repetition rate increases to the giga-/terahertz regime. A set of advanced computational tools will be developed and implemented to understand the laser and materials interactions under extreme conditions. Successful completion of this project will enable confined heating of ultrahigh-repetition-rate lasers to the nanoscale, thereby improving the precision and efficiency of ablation, melting, and sintering of nano-layers at material surfaces. The research team will also develop education programs on thermal transport and laser manufacturing at the extremes to impact and inspire broad audiences, from local K-12 students to students at the University of Nevada, Reno. Open-source code developed from the project will be deployed at nanoHUB.org and accessible to both academia and industry. The overarching goals of this project are to predict and control the depth of the heat-affected zone during ultrahigh-repetition-rate laser processing, to model the unique microstructure behaviors of laser-material interactions under extreme conditions, and to develop and apply advanced thermomechanical models to predict the material responses to laser processing. Specifically, the research team will develop, validate, and share advanced computational models for predicting thermal transport behaviors for a broad range of materials under pulsed laser heating at repetition rates up to the terahertz regime. Moreover, the PIs will develop thermomechanical models—synergizing the power of the phase field method, molecular dynamics, and Boltzmann transport equations—for predicting the poorly understood material behaviors and properties during and after ultrahigh-repetition-rate laser processing. The process-structure-property relations for ultrahigh-repetition-rate laser processing will be established through this project. Such knowledge will enable the development of ultra-precise, fast, and efficient laser manufacturing technologies via nano-confined heating. This project is jointly funded by the Thermal Transport Processes program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脉冲激光加工是一种使用超快激光脉冲精确制造三维物体的制造方法。 在脉冲激光加工中的可调参数中,激光重复率(每秒的激光脉冲数)最近才被认为是控制激光烧蚀、烧结和熔化过程的受影响深度的关键。这种深度限制决定了微/纳米电子学、航空航天和核应用的脉冲激光技术的分辨率和效率。该项目旨在探索当激光重复率增加到千兆/太赫兹制度时可实现的最小深度。将开发和实施一套先进的计算工具,以了解极端条件下激光和材料的相互作用。该项目的成功完成将使超高重复率激光器的受限加热达到纳米级,从而提高材料表面纳米层烧蚀、熔化和烧结的精度和效率。该研究团队还将开发关于极端热传输和激光制造的教育计划,以影响和激励广泛的受众,从当地的K-12学生到内华达州里诺大学的学生。该项目开发的开源代码将部署在nanoHUB.org上,学术界和工业界都可以访问。该项目的总体目标是预测和控制超高重复率激光加工过程中热影响区的深度,模拟极端条件下激光-材料相互作用的独特微观结构行为,并开发和应用先进的热机械模型来预测材料对激光加工的响应。具体来说,研究团队将开发,验证和共享先进的计算模型,用于预测在重复频率高达太赫兹的脉冲激光加热下各种材料的热传输行为。此外,PI将开发热力学模型-协同相场方法,分子动力学和玻尔兹曼输运方程的力量-用于预测在超高重复率激光处理期间和之后的知之甚少的材料行为和性能。本计画将建立超高重复频率雷射加工之制程-结构-性质关系。这些知识将使通过纳米限制加热的超精密,快速和高效的激光制造技术的发展成为可能。该项目由热传输过程计划和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formation of {112¯2} contraction twins in titanium through reversible martensitic phase transformation
  • DOI:
    10.1016/j.scriptamat.2020.113694
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Amir Hassan Zahiri;Jamie Ombogo;Lei Cao
  • 通讯作者:
    Amir Hassan Zahiri;Jamie Ombogo;Lei Cao
The role of mechanical loading in bcc-hcp phase transition: tension-compression asymmetry and twin formation
  • DOI:
    10.1016/j.actamat.2022.118377
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Amir Hassan Zahiri;Eduardo Vitral;Jamie Ombogo;M. Lotfpour;Lei Cao
  • 通讯作者:
    Amir Hassan Zahiri;Eduardo Vitral;Jamie Ombogo;M. Lotfpour;Lei Cao
Twinning in Hexagonal Close-Packed Materials: The Role of Phase Transformation
六方密堆积材料中的孪生:相变的作用
  • DOI:
    10.3390/met13030525
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zahiri, Amir Hassan;Ombogo, Jamie;Lotfpour, Mehrab;Cao, Lei
  • 通讯作者:
    Cao, Lei
Transformation-induced plasticity in omega titanium
  • DOI:
    10.1063/5.0035465
  • 发表时间:
    2021-01-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zahiri, Amir Hassan;Ombogo, Jamie;Cao, Lei
  • 通讯作者:
    Cao, Lei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Wang其他文献

Synthesis, structure, and reactivity of .eta.2-1,3-diene and enyne complexes of the chiral rhenium Lewis acid [(.eta.5-C5H5)Re(NO)(PPh3)]+: ozonolysis within a metal coordination sphere
手性铼路易斯酸[(eta.5-C5H5)Re(NO)(PPh3)]的eta2-1,3-二烯和烯炔配合物的合成、结构和反应性:金属配位球内的臭氧分解
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Peng;Yan Wang;A. Arif;J. Gladysz
  • 通讯作者:
    J. Gladysz
Prevalence and characteristics of cough headache in a Chinese respiratory clinic
我国某呼吸科门诊咳嗽头痛的患病率及特点[J].
  • DOI:
    10.1177/0333102420970187
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Yimo Zhang;Xin Zhao;Yan Wang;Zhao Dong;Shengyuan Yu
  • 通讯作者:
    Shengyuan Yu
An Acetone Sensor Based on Plasma-Assisted Cataluminescence and Mechanism Studies by Online Ionizations.
基于等离子体辅助催化发光的丙酮传感器和在线电离机理研究。
  • DOI:
    10.1021/acs.analchem.9b04023
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Ni Zeng;Zi Long;Yan Wang;Jianghui Sun;Jin Ouyang;Na Na
  • 通讯作者:
    Na Na
Cooperation Diversity for Secrecy Enhancement in Cognitive Relay Wiretap Network Over Correlated Fading Channels
相关衰落信道上认知中继窃听网络保密性增强的合作多样性
  • DOI:
    10.1109/access.2018.2837225
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Mu Li;Hao Yin;Yuzhen Huang;Yan Wang;Rui Yu
  • 通讯作者:
    Rui Yu
Applying the chemical bonding theory of single crystal growth to a Gd3Ga5O12 Czochralski growth system: both thermodynamic and kinetic controls of themesoscale process during single crystal growth
将单晶生长的化学键合理论应用于 Gd3Ga5O12 直拉生长系统:单晶生长过程中尺度过程的热力学和动力学控制
  • DOI:
    10.1039/c5ce00291e
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Yan Wang;Congting Sun;Chaoyang Tu;Dongfeng Xue
  • 通讯作者:
    Dongfeng Xue

Yan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan Wang', 18)}}的其他基金

Spatial Explanation and Planning for Resilience of Community-Based Small Businesses to Environmental Shocks
基于社区的小型企业对环境冲击的抵御能力的空间解释和规划
  • 批准号:
    2316450
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
  • 批准号:
    2211696
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Mobile Edge Oriented Deep Learning Framework
职业:高效的面向移动边缘的深度学习框架
  • 批准号:
    2145389
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120276
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
  • 批准号:
    2047109
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
SCC-PG: SmartCurb: Building Smart Urban Curb Environments
SCC-PG:SmartCurb:构建智能城市路缘环境
  • 批准号:
    2124858
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RII Track-4: Low-temperature Laser Sintering and Melting of Semiconductors Through Selective Excitation of Soft Phonons
RII Track-4:通过软声子的选择性激发实现半导体的低温激光烧结和熔化
  • 批准号:
    2033424
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RAPID: Dynamic Interactions between Human and Information in Complex Online Environments Responding to SARS-COV-2
RAPID:复杂在线环境中人与信息之间的动态交互,应对 SARS-COV-2
  • 批准号:
    2028012
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
  • 批准号:
    2028858
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

Tuning the Thermodynamics and Kinetics of H+ and e- Transfer in Nanoconfined Environments
调整纳米环境中 H 和电子转移的热力学和动力学
  • 批准号:
    2204045
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Influence of Structure, Interionic Interactions, Interfacial slip and Viscous-electric Coupling Phenomena on the Rheology of Nanoconfined Ionic Liquids
结构、离子间相互作用、界面滑移和粘电耦合现象对纳米限域离子液体流变性的影响
  • 批准号:
    1916609
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
UNS: Interfacial Properties of Nanoconfined Ionic Liquid
UNS:纳米离子液体的界面性质
  • 批准号:
    2015653
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: 1D Nanoconfined Helium: A Versatile Platform for Exploring Luttinger Liquid Physics
合作研究:一维纳米限制氦:探索 Luttinger 液体物理的多功能平台
  • 批准号:
    1809027
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: 1D Nanoconfined Helium: A Versatile Platform for Exploring Luttinger Liquid Physics
合作研究:一维纳米限制氦:探索 Luttinger 液体物理的多功能平台
  • 批准号:
    1808440
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Unusual diffusion behavior of metal ion in nanoconfined ionic liquid solution
金属离子在纳米离子液体溶液中的异常扩散行为
  • 批准号:
    18K19056
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nanoconfined ionic liquids for electrochemical reduction of carbon dioxide
用于电化学还原二氧化碳的纳米离子液体
  • 批准号:
    FT170100224
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    ARC Future Fellowships
CAREER: Molecular modeling of solidification of nanoconfined ionic liquids
职业:纳米离子液体凝固的分子模拟
  • 批准号:
    1649455
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Water reorientation and proton transport at the nanoconfined water/amorphous oxide interface
纳米约束水/无定形氧化物界面的水重新取向和质子传输
  • 批准号:
    1609044
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
The quantum mechanics of small molecules nanoconfined in complex chemical environments
复杂化学环境中纳米限制小分子的量子力学
  • 批准号:
    1566085
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了