CDS&E: Nanoconfined Heating via Ultrahigh-repetition-rate Lasers for Enhanced Surface Processing

CDS

基本信息

项目摘要

Pulsed laser processing is a manufacturing method that uses ultrafast laser pulses to precisely fabricate three-dimensional objects. Among the tunable parameters in pulsed laser processing, the laser repetition rate (the number of laser pulses per second) has only recently been recognized as essential for controlling the affected depth of laser ablation, sintering, and melting processes. This depth limit determines the resolution and efficiency of pulsed laser technologies for micro-/nano-electronics and aerospace and nuclear applications. This project aims to explore the minimum achievable depth when the laser repetition rate increases to the giga-/terahertz regime. A set of advanced computational tools will be developed and implemented to understand the laser and materials interactions under extreme conditions. Successful completion of this project will enable confined heating of ultrahigh-repetition-rate lasers to the nanoscale, thereby improving the precision and efficiency of ablation, melting, and sintering of nano-layers at material surfaces. The research team will also develop education programs on thermal transport and laser manufacturing at the extremes to impact and inspire broad audiences, from local K-12 students to students at the University of Nevada, Reno. Open-source code developed from the project will be deployed at nanoHUB.org and accessible to both academia and industry. The overarching goals of this project are to predict and control the depth of the heat-affected zone during ultrahigh-repetition-rate laser processing, to model the unique microstructure behaviors of laser-material interactions under extreme conditions, and to develop and apply advanced thermomechanical models to predict the material responses to laser processing. Specifically, the research team will develop, validate, and share advanced computational models for predicting thermal transport behaviors for a broad range of materials under pulsed laser heating at repetition rates up to the terahertz regime. Moreover, the PIs will develop thermomechanical models—synergizing the power of the phase field method, molecular dynamics, and Boltzmann transport equations—for predicting the poorly understood material behaviors and properties during and after ultrahigh-repetition-rate laser processing. The process-structure-property relations for ultrahigh-repetition-rate laser processing will be established through this project. Such knowledge will enable the development of ultra-precise, fast, and efficient laser manufacturing technologies via nano-confined heating. This project is jointly funded by the Thermal Transport Processes program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脉冲激光处理是一种制造方法,它使用超快激光脉冲精确地制造了三维物体。在脉冲激光处理中的可调参数中,激光重复率(每秒激光脉冲的数量)直到最近才被认为是控制激光消融,烧结和熔化过程的影响深度至关重要。该深度极限决定了脉冲激光技术在微/纳米电子和航空航天和核应用方面的分辨率和效率。该项目旨在探索当激光重复率提高到GIGA-/Terahertz制度时,探索最低可实现的深度。将开发和实施一组先进的计算工具,以了解极端条件下的激光和材料相互作用。该项目的成功完成将使纳米级的超高repetition-Rate-Lasers限制加热,从而提高材料表面上的纳米层的消融,熔化和烧结的精度和效率。研究团队还将开发有关极端热运输和激光制造的教育计划,以影响和激发广泛的受众,从当地的K-12学生到里诺内华达大学的学生。该项目开发的开源代码将在nanohub.org部署,并可供学术界和行业访问。该项目的总体目标是预测和控制超高重复速率激光处理期间热影响区域的深度,以模拟极端条件下激光 - 物质相互作用的独特微观结构行为,并在极端条件下开发和应用高级热力学模型,以预测对激光器处理的材料响应。具体而言,研究团队将开发,验证和共享先进的计算模型,以预测脉冲激光加热的广泛材料的热传输行为,直到Terahertz制度。此外,PI将开发热机械模型 - 使相位场方法的功能,分子动力学和Boltzmann传输方程相结合,以预测超高重复比率激光器处理过程中和之后的材料行为和特性不足。该项目将建立用于超高重复速率激光处理的过程结构 - 培训关系。这些知识将通过纳米限制的加热来开发超精油,快速和高效的激光制造技术。该项目由热运输过程计划和启发竞争性研究的既定计划共同资助。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为通过评估被认为是宝贵的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formation of {112¯2} contraction twins in titanium through reversible martensitic phase transformation
  • DOI:
    10.1016/j.scriptamat.2020.113694
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Amir Hassan Zahiri;Jamie Ombogo;Lei Cao
  • 通讯作者:
    Amir Hassan Zahiri;Jamie Ombogo;Lei Cao
The role of mechanical loading in bcc-hcp phase transition: tension-compression asymmetry and twin formation
  • DOI:
    10.1016/j.actamat.2022.118377
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Amir Hassan Zahiri;Eduardo Vitral;Jamie Ombogo;M. Lotfpour;Lei Cao
  • 通讯作者:
    Amir Hassan Zahiri;Eduardo Vitral;Jamie Ombogo;M. Lotfpour;Lei Cao
Twinning in Hexagonal Close-Packed Materials: The Role of Phase Transformation
六方密堆积材料中的孪生:相变的作用
  • DOI:
    10.3390/met13030525
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zahiri, Amir Hassan;Ombogo, Jamie;Lotfpour, Mehrab;Cao, Lei
  • 通讯作者:
    Cao, Lei
Transformation-induced plasticity in omega titanium
  • DOI:
    10.1063/5.0035465
  • 发表时间:
    2021-01-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zahiri, Amir Hassan;Ombogo, Jamie;Cao, Lei
  • 通讯作者:
    Cao, Lei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Wang其他文献

Analysis and design of low phase noise crystal oscillators
低相位噪声晶体振荡器的分析与设计
Adaptive vergence reconstruction method for mixed reality systems
混合现实系统的自适应聚散重建方法
  • DOI:
    10.1117/12.2644007
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Zhdanov;D. Zhdanov;Nariman Esedov;I. Potemin;Yan Wang
  • 通讯作者:
    Yan Wang
Clinicopathological and Prognostic Signi cance of Maspin Expression in Resected Non-Small Cell Lung Cancer: A Meta-Analysis
Maspin 表达在切除的非小细胞肺癌中的临床病理学和预后意义:荟萃分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Wang
  • 通讯作者:
    Yan Wang
Clinicopathological and prognostic significance of maspin expression in resected non-small cell lung cancer: a meta-analysis CURRENT STATUS:
切除的非小细胞肺癌中 maspin 表达的临床病理学和预后意义:一项荟萃分析 当前状态:
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Wang
  • 通讯作者:
    Yan Wang
The value of immunohistochemistry in diagnosing primary renal synovial sarcoma: a case report and literature review.
免疫组织化学在诊断原发性肾滑膜肉瘤中的价值:病例报告及文献复习。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0.1
  • 作者:
    Luo Yang;Kun;L. Hong;Yan Wang;Xia Li
  • 通讯作者:
    Xia Li

Yan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan Wang', 18)}}的其他基金

Spatial Explanation and Planning for Resilience of Community-Based Small Businesses to Environmental Shocks
基于社区的小型企业对环境冲击的抵御能力的空间解释和规划
  • 批准号:
    2316450
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
  • 批准号:
    2211696
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Mobile Edge Oriented Deep Learning Framework
职业:高效的面向移动边缘的深度学习框架
  • 批准号:
    2145389
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120276
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
  • 批准号:
    2047109
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
SCC-PG: SmartCurb: Building Smart Urban Curb Environments
SCC-PG:SmartCurb:构建智能城市路缘环境
  • 批准号:
    2124858
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RII Track-4: Low-temperature Laser Sintering and Melting of Semiconductors Through Selective Excitation of Soft Phonons
RII Track-4:通过软声子的选择性激发实现半导体的低温激光烧结和熔化
  • 批准号:
    2033424
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RAPID: Dynamic Interactions between Human and Information in Complex Online Environments Responding to SARS-COV-2
RAPID:复杂在线环境中人与信息之间的动态交互,应对 SARS-COV-2
  • 批准号:
    2028012
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
  • 批准号:
    2028858
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

结合二维材料薄膜包覆纳米液滴的扫描探针液滴摩擦力显微术研究
  • 批准号:
    52375556
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
结合CRISPR/Cas9技术调控肿瘤代谢重编程与氧化还原稳态的仿生纳米载药系统的构建及其HNSCC精准治疗研究
  • 批准号:
    82304425
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米纤维结合MOFs构建外泌体快速富集与代谢分析的微流控芯片新方法研究
  • 批准号:
    22304127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米酶侧流试纸条结合智能手机快速检测介水病毒
  • 批准号:
    22376112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于炎性黏膜靶向粘附及网格蛋白介导的内吞递药效应探讨纳米水滑石结合型溃疡油在治疗放射性食管炎中的作用机制
  • 批准号:
    82304960
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Tuning the Thermodynamics and Kinetics of H+ and e- Transfer in Nanoconfined Environments
调整纳米环境中 H 和电子转移的热力学和动力学
  • 批准号:
    2204045
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Influence of Structure, Interionic Interactions, Interfacial slip and Viscous-electric Coupling Phenomena on the Rheology of Nanoconfined Ionic Liquids
结构、离子间相互作用、界面滑移和粘电耦合现象对纳米限域离子液体流变性的影响
  • 批准号:
    1916609
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
UNS: Interfacial Properties of Nanoconfined Ionic Liquid
UNS:纳米离子液体的界面性质
  • 批准号:
    2015653
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: 1D Nanoconfined Helium: A Versatile Platform for Exploring Luttinger Liquid Physics
合作研究:一维纳米限制氦:探索 Luttinger 液体物理的多功能平台
  • 批准号:
    1809027
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: 1D Nanoconfined Helium: A Versatile Platform for Exploring Luttinger Liquid Physics
合作研究:一维纳米限制氦:探索 Luttinger 液体物理的多功能平台
  • 批准号:
    1808440
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了