Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
基本信息
- 批准号:2311597
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many advanced edge computing applications rely on large-scale data analysis for high-level decision making. Edge computing makes computing faster and more efficient because it takes place near the physical location of either the user or the data rather than sending all the information to the cloud. For example, augmented reality/virtual reality (AR/VR) applications utilize data from high-definition sensors (e.g., cameras, motion sensors, and microphones) to enable accurate and robust human-computer interactions. Drones and electric vehicles perform tracking, adjustments and obstacle recognition and avoidance via analyzing data at the level of the vehicle. However, the current ability to understand and manage various high-dimensional sensing data is obscured by significant knowledge and data gaps due to the heterogeneous edge device and environments, hindering the building of precise models for emerging edge computing applications using data analytics. One important trend in edge computing is utilizing artificial intelligence (AI) to extract complex knowledge from various sensor measurements for precise modeling. However, most edge devices have limited computing and memory resources, making it challenging to perform sophisticated data analytics using AI while satisfying the time requirements of most applications. Therefore, a heuristic data analytic framework is needed to enable efficient and robust edge event prediction using multi-model learning on resource-constrained edge devices. The goal of this project is developing transformative machine learning and data analytics technologies for enabling AI-based applications on resource-constrained edge computing devices (e.g., IoT devices, AR/VR headsets, and drones). The outcome of this project will advance data analytics and machine learning research of deriving and integrating various high-dimensional sensing data from diverse data sources and building robust predictive models for generic edge computing applications. This project addresses two major problems: 1) the gap between the data complexity and limited computing resources on edge devices and 2) the gap between the robust performance requirement and the multi-dimensional data and complex data modeling from heterogeneous edge devices and environments. The project develops an efficient and robust edge computing framework to provide correctness guarantees on heterogeneous edge computing hardware across different environments. In particular, deep neural network acceleration techniques are designed to enable fine-grained data analytics on resource-constrained commercial-off-the-shelf edge devices. Novel multivariate data analytic models are developed to characterize the unique features of the target event based on high-dimensional sensing data. Such models advance the usage of data science in generic edge sensing tasks that usually suffer from long training times, low prediction accuracy, and ineffective parameter selection. Additionally, the project addresses the challenges arising from the heterogeneity in devices and environments by developing environment-transferable features and models, which enable easy deployment of AI-enabled applications across devices and environments. The project seeks to integrate computer science research with graduate and undergraduate curricula and promote female engineering student involvement. The outcomes will be shared through conferences, journals, and website accessibility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多先进的边缘计算应用依赖于大规模数据分析来进行高层决策。边缘计算使计算速度更快、效率更高,因为它发生在用户或数据的物理位置附近,而不是将所有信息发送到云中。例如,增强现实/虚拟现实(AR/VR)应用程序利用来自高清晰度传感器(例如,摄像头、运动传感器和麦克风)的数据来实现准确和健壮的人机交互。无人机和电动汽车通过分析车辆层面的数据来执行跟踪、调整以及障碍物识别和避让。然而,由于边缘设备和环境的异质性,当前理解和管理各种高维传感数据的能力被大量的知识和数据缺口所掩盖,阻碍了使用数据分析为新兴的边缘计算应用建立精确的模型。边缘计算的一个重要趋势是利用人工智能(AI)从各种传感器测量数据中提取复杂知识,以进行精确建模。然而,大多数边缘设备的计算和内存资源有限,因此在满足大多数应用程序的时间要求的同时,使用人工智能执行复杂的数据分析具有挑战性。因此,需要一个启发式数据分析框架,以便在资源受限的边缘设备上使用多模型学习来实现高效和稳健的边缘事件预测。该项目的目标是开发变革性的机器学习和数据分析技术,以便在资源受限的边缘计算设备(例如物联网设备、AR/VR耳机和无人机)上实现基于AI的应用。该项目的成果将推动数据分析和机器学习研究,从不同的数据源获得和集成各种高维传感数据,并为通用边缘计算应用建立稳健的预测模型。该项目解决了两个主要问题:1)边缘设备上的数据复杂性与有限的计算资源之间的差距;2)健壮的性能需求与来自不同边缘设备和环境的多维数据和复杂数据建模之间的差距。该项目开发了一个高效和健壮的边缘计算框架,以提供跨不同环境的异质边缘计算硬件的正确性保证。特别是,深度神经网络加速技术旨在实现对资源受限的商业现成边缘设备的细粒度数据分析。发展了新的多变量数据分析模型,以基于高维传感数据来表征目标事件的独特特征。这种模型促进了数据科学在一般边缘检测任务中的使用,这些任务通常存在训练时间长、预测精度低和参数选择无效的问题。此外,该项目通过开发环境可迁移的功能和模型来应对设备和环境中的异构性带来的挑战,从而能够在设备和环境中轻松部署支持人工智能的应用程序。该项目旨在将计算机科学研究与研究生和本科生的课程相结合,并促进女性工程专业学生的参与。结果将通过会议、期刊和网站的可访问性进行分享。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Wang其他文献
Synthesis, structure, and reactivity of .eta.2-1,3-diene and enyne complexes of the chiral rhenium Lewis acid [(.eta.5-C5H5)Re(NO)(PPh3)]+: ozonolysis within a metal coordination sphere
手性铼路易斯酸[(eta.5-C5H5)Re(NO)(PPh3)]的eta2-1,3-二烯和烯炔配合物的合成、结构和反应性:金属配位球内的臭氧分解
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
T. Peng;Yan Wang;A. Arif;J. Gladysz - 通讯作者:
J. Gladysz
Prevalence and characteristics of cough headache in a Chinese respiratory clinic
我国某呼吸科门诊咳嗽头痛的患病率及特点[J].
- DOI:
10.1177/0333102420970187 - 发表时间:
2020 - 期刊:
- 影响因子:4.9
- 作者:
Yimo Zhang;Xin Zhao;Yan Wang;Zhao Dong;Shengyuan Yu - 通讯作者:
Shengyuan Yu
An Acetone Sensor Based on Plasma-Assisted Cataluminescence and Mechanism Studies by Online Ionizations.
基于等离子体辅助催化发光的丙酮传感器和在线电离机理研究。
- DOI:
10.1021/acs.analchem.9b04023 - 发表时间:
2019 - 期刊:
- 影响因子:7.4
- 作者:
Ni Zeng;Zi Long;Yan Wang;Jianghui Sun;Jin Ouyang;Na Na - 通讯作者:
Na Na
Cooperation Diversity for Secrecy Enhancement in Cognitive Relay Wiretap Network Over Correlated Fading Channels
相关衰落信道上认知中继窃听网络保密性增强的合作多样性
- DOI:
10.1109/access.2018.2837225 - 发表时间:
2018 - 期刊:
- 影响因子:3.9
- 作者:
Mu Li;Hao Yin;Yuzhen Huang;Yan Wang;Rui Yu - 通讯作者:
Rui Yu
Applying the chemical bonding theory of single crystal growth to a Gd3Ga5O12 Czochralski growth system: both thermodynamic and kinetic controls of themesoscale process during single crystal growth
将单晶生长的化学键合理论应用于 Gd3Ga5O12 直拉生长系统:单晶生长过程中尺度过程的热力学和动力学控制
- DOI:
10.1039/c5ce00291e - 发表时间:
2015 - 期刊:
- 影响因子:3.1
- 作者:
Yan Wang;Congting Sun;Chaoyang Tu;Dongfeng Xue - 通讯作者:
Dongfeng Xue
Yan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Wang', 18)}}的其他基金
Spatial Explanation and Planning for Resilience of Community-Based Small Businesses to Environmental Shocks
基于社区的小型企业对环境冲击的抵御能力的空间解释和规划
- 批准号:
2316450 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
- 批准号:
2211696 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Efficient Mobile Edge Oriented Deep Learning Framework
职业:高效的面向移动边缘的深度学习框架
- 批准号:
2145389 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
- 批准号:
2120276 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
- 批准号:
2047109 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SCC-PG: SmartCurb: Building Smart Urban Curb Environments
SCC-PG:SmartCurb:构建智能城市路缘环境
- 批准号:
2124858 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RII Track-4: Low-temperature Laser Sintering and Melting of Semiconductors Through Selective Excitation of Soft Phonons
RII Track-4:通过软声子的选择性激发实现半导体的低温激光烧结和熔化
- 批准号:
2033424 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: Dynamic Interactions between Human and Information in Complex Online Environments Responding to SARS-COV-2
RAPID:复杂在线环境中人与信息之间的动态交互,应对 SARS-COV-2
- 批准号:
2028012 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
- 批准号:
2028858 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CDS&E: Nanoconfined Heating via Ultrahigh-repetition-rate Lasers for Enhanced Surface Processing
CDS
- 批准号:
1953300 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant