Modeling and Control of Ceovolutionary Network Formation with Applications to Finishing Processes for 3D Printed Components
计算机进化网络形成的建模和控制及其在 3D 打印组件精加工过程中的应用
基本信息
- 批准号:1953694
- 负责人:
- 金额:$ 43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network representations allow a deep understanding of the dynamics of natural and technological systems by providing explicit characterization of pairwise relations between entities within the system in consideration. For instance, using networks to represent physical contacts among individuals in a community can provide a more precise representation of an infectious disease outbreak dynamics than standard models where homogeneous mixing of the population is assumed. However, networks do not appear out of thin air and their statistical properties tend to evolve over time given the dynamic nature of the systems. This project addresses the fundamental issues that are at the nexus of fields of network science and control theory, on how real-world networks arise, how they co-evolve with the environment, and how they can be perturbed. Theoretical aspects of this project will be assessed, and in part are motivated, by an experimental thread in controlling localized finishing processes of material surfaces in 3D printing. A material surface at the sub-micrometer level can be thought of as a wrinkled paper with asperities and pores that admits network representations. A finishing process aims to efficiently transition a rough surface (disconnected network) into a smooth surface (highly connected network) through abrasive action. Currently, finishing and post-processing techniques, commonly used to impart desired surface characteristics on 3D printed components, consume 20-70% of the total cycle time. Efficiency gains in and automation of finishing processes can overcome this major impediment to the industrial adoption of this technology. Networks form and change in the real world not just due to the interactions among their internal entities (i.e., nodes) but from their dynamic coupling and coevolution with the environment. The research aims to achieve the following scientific contributions: a) novel network formation models with endogenous dynamical processes and strategic node-level decision-making, and characterization of the effects of latencies and critical feedbacks on emerging network structure; b) theoretical framework for control of network formation that will provide optimal interventions to the decision-making, the dynamic process or the network structure by an external agent in order to shape the arising network features; c) consistent network representations of surface morphology evolution during finishing processes, and automated local finishing processes that are efficient and guarantee desired surface properties. The key technical novelty in modeling of network formation processes is the introduction of latency effects of environmental dynamics and node behavior, which yields a rich set of dynamics, questioning the robustness of fundamental network formation models. We propose to leverage recent works on influence maximization and optimal control with Kullback-Leibler control costs to provide a control theoretic framework for efficiently obtaining desired network structures given the nonlinear dynamics of coevolving networks. Our validation effort promises to show how the proposed theoretical framework can be transformative in novel application areas, e.g., smart finishing of 3D printed components.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络表示允许通过提供所考虑的系统内实体之间的成对关系的明确表征来深入理解自然和技术系统的动态。例如,使用网络来表示社区中个人之间的身体接触,可以比假设人口均匀混合的标准模型更精确地表示传染病爆发动态。然而,网络并不是凭空出现的,考虑到系统的动态性质,它们的统计特性往往会随着时间的推移而演变。该项目解决了网络科学和控制理论领域的基本问题,即现实世界的网络是如何产生的,它们如何与环境共同进化,以及它们如何受到干扰。该项目的理论方面将通过控制3D打印中材料表面的局部精加工过程的实验线程进行评估,并在一定程度上受到激励。亚微米级的材料表面可以被认为是一张起皱的纸,上面有粗糙的表面和允许网络表示的孔隙。精加工过程旨在通过研磨作用将粗糙表面(断开的网络)有效地转变为光滑表面(高度连接的网络)。目前,通常用于在3D打印部件上赋予所需表面特性的精加工和后处理技术消耗了总周期时间的20-70%。精加工过程的效率提高和自动化可以克服工业采用这项技术的主要障碍。网络在真实的世界中的形成和变化不仅仅是由于其内部实体之间的相互作用(即,节点),而是来自它们与环境的动态耦合和共同进化。本研究旨在实现以下科学贡献:(1)具有内生动力过程和战略节点级决策的新型网络形成模型,以及表征延迟和临界反馈对新兴网络结构的影响; B)控制网络形成的理论框架,为决策提供最佳干预,动态过程或网络结构通过外部代理,以便形成所产生的网络特征; c)在精加工过程中表面形态演变的一致网络表示,以及高效且保证所需表面性质的自动化局部精加工过程。网络形成过程建模的关键技术新奇是引入环境动态和节点行为的延迟效应,这产生了一组丰富的动态,质疑基本网络形成模型的鲁棒性。我们建议利用最近的影响最大化和最优控制与Kullback-Leibler控制成本的工作,提供一个控制理论框架,有效地获得所需的网络结构的非线性动力学的共同进化网络。我们的验证工作有望展示所提出的理论框架如何在新的应用领域中具有变革性,例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying the influence of surface texture waveforms on colors of polished surfaces using an explainable AI approach
使用可解释的 AI 方法识别表面纹理波形对抛光表面颜色的影响
- DOI:10.1080/24725854.2022.2100050
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Zhong, Yuhao;Tiwari, Akash;Yamaguchi, Hitomi;Lakhtakia, Akhlesh;Bukkapatnam, Satish T.S.
- 通讯作者:Bukkapatnam, Satish T.S.
Explainable AI-infused ultrasonic inspection for internal defect detection
- DOI:10.1016/j.cirp.2022.04.036
- 发表时间:2022-07-12
- 期刊:
- 影响因子:4.1
- 作者:Karthikeyan, Adithyaa;Tiwari, Akash;Bukkapatnam, Satish T. S.
- 通讯作者:Bukkapatnam, Satish T. S.
Approximate Submodularity of Maximizing Anticoordination in Network Games
网络游戏中最大化反协调的近似子模性
- DOI:10.1109/cdc51059.2022.9993180
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Das, Soham;Eksin, Ceyhun
- 通讯作者:Eksin, Ceyhun
Optimal Evolutionary Control for Artificial Selection on Molecular Phenotypes
分子表型人工选择的最优进化控制
- DOI:10.1103/physrevx.11.011044
- 发表时间:2021
- 期刊:
- 影响因子:12.5
- 作者:Nourmohammad, Armita;Eksin, Ceyhun
- 通讯作者:Eksin, Ceyhun
SIS epidemics coupled with evolutionary social distancing dynamics
SIS 流行病与进化的社会距离动态相结合
- DOI:10.23919/acc55779.2023.10156026
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Paarporn, Keith;Eksin, Ceyhun
- 通讯作者:Eksin, Ceyhun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ceyhun Eksin其他文献
Information sharing for a coordination game in fluctuating environments
波动环境中协调博弈的信息共享
- DOI:
10.1101/268268 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Keith Paarporn;Ceyhun Eksin;J. Weitz - 通讯作者:
J. Weitz
Learning pure-strategy Nash equilibria in networked multi-agent systems with uncertainty
在不确定性网络多智能体系统中学习纯策略纳什均衡
- DOI:
10.1109/cdc.2016.7799080 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ceyhun Eksin;Brian Swenson;S. Kar;Alejandro Ribeiro - 通讯作者:
Alejandro Ribeiro
Incentive Control in Network Anti-Coordination Games with Binary Types
二元型网络反协调博弈的激励控制
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Keith Paarporn;Ceyhun Eksin - 通讯作者:
Ceyhun Eksin
Control of stochastic disease network games via influential individuals
通过有影响力的个体控制随机疾病网络游戏
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ceyhun Eksin - 通讯作者:
Ceyhun Eksin
Distributed filters for Bayesian network games
贝叶斯网络游戏的分布式过滤器
- DOI:
10.5281/zenodo.43737 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ceyhun Eksin;Pooya Molavi;Alejandro Ribeiro;A. Jadbabaie - 通讯作者:
A. Jadbabaie
Ceyhun Eksin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ceyhun Eksin', 18)}}的其他基金
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CIF: Small: Communication-Aware Decentralized Game-Theoretic Learning Algorithms for Networked Systems with Uncertainty
CIF:小型:用于不确定性网络系统的通信感知去中心化博弈论学习算法
- 批准号:
2008855 - 财政年份:2020
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
CAREER: Elucidating Biogenic Control of Heterogenous Ice Nucleation
职业:阐明异质冰核的生物控制
- 批准号:
2336558 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Standard Grant