Questions and Methods in Probabilistic Combinatorics

概率组合学中的问题和方法

基本信息

  • 批准号:
    1953990
  • 负责人:
  • 金额:
    $ 17.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The probabilistic method is a powerful technique for using probability theory to prove seemingly non-probabilistic facts in combinatorics. Together with the probabilistic method, a second line of study that has grown rapidly is the study of random structures, most famously random graphs. These two lines of research are collectively known as probabilistic combinatorics. This project aims to develop new ideas and techniques in probabilistic combinatorics by studying concrete questions in the field. In addition to fundamental advances in probability and combinatorics, previous work on probabilistic combinatorics has led to development of tools that have had enormous impacts in computer science, where they are used to design and study randomized algorithms and to understand performance on random inputs and in noisy environments.The investigator plans to focus on several topics. One topic concerns Ramsey graphs, which are an important class of graphs that are “approximately extremal” for Ramsey’s theorem. The investigator plans to build on some previous work regarding edge statistics in Ramsey graphs, which also naturally leads to the study of the so-called quadratic Littlewood-Offord problem. Another topic is the subject of extremal theorems “relative to a random set.” For example, given a typical outcome of a random hypergraph, what conditions on a spanning subgraph ensure that it has a perfect matching? To approach questions of this type, the investigator plans to apply some new insights for applying the so-called absorption method non-constructively.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
概率方法是一种强大的技术,用于使用概率理论来证明组合学中看似非概率的事实。与概率方法一起,迅速发展的第二个研究领域是随机结构的研究,最著名的是随机图。这两条研究路线统称为概率组合学。本计画旨在透过研究机率组合学的具体问题,发展机率组合学的新观念与新技术。除了在概率和组合学的基本进展,以前的工作概率组合学已经导致了在计算机科学中产生巨大影响的工具的发展,在那里他们被用来设计和研究随机算法,并了解随机输入和噪声环境中的性能。其中一个主题涉及拉姆齐图,这是一类重要的图,是拉姆齐定理的“近似极值”。研究人员计划建立在一些以前的工作,边缘统计拉姆齐图,这也自然导致了所谓的二次Littlewood-Offord问题的研究。另一个主题是“相对于随机集”的极值定理。例如,给定一个随机超图的典型结果,在生成子图上什么条件确保它具有完美匹配?为了解决这类问题,研究人员计划应用一些新的见解,用于非建设性地应用所谓的吸收方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extension complexity of low-dimensional polytopes
低维多胞形的可拓复杂度
Clique minors in graphs with a forbidden subgraph
带有禁止子图的图中的小集团未成年人
  • DOI:
    10.1002/rsa.21038
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Bucić, Matija;Fox, Jacob;Sudakov, Benny
  • 通讯作者:
    Sudakov, Benny
Threshold Ramsey multiplicity for odd cycles
奇数循环的阈值 Ramsey 重数
Removal lemmas and approximate homomorphisms
移除引理和近似同态
  • DOI:
    10.1017/s0963548321000572
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fox, Jacob;Zhao, Yufei
  • 通讯作者:
    Zhao, Yufei
Lower bounds for superpatterns and universal sequences
超级模式和通用序列的下界
  • DOI:
    10.1016/j.jcta.2021.105467
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chroman, Zachary;Kwan, Matthew;Singhal, Mihir
  • 通讯作者:
    Singhal, Mihir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Fox其他文献

Identifying when choice helps: clarifying the relationships between choice making, self-construal, and pain
确定选择何时有帮助:澄清选择、自我认知和痛苦之间的关系
  • DOI:
    10.1007/s10865-015-9708-4
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jacob Fox;Shane Close;Jason P. Rose;Andrew L. Geers
  • 通讯作者:
    Andrew L. Geers
Inhaled Silica Nanoparticles Causes Chronic Kidney Disease in Rats.
吸入二氧化硅纳米颗粒会导致大鼠慢性肾病。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fumihiko Sasai;Keegan L. Rogers;D. Orlicky;A. Stem;J. Schaeffer;Gabriela E Garcia;Jacob Fox;M. Ray;J. Butler;Marvin González;R. Leiva;G. Taduri;Sirirat Anutrakulchai;V. Venugopal;M. Madero;Jason Glaser;Julia Wijkstrom;A. Wernerson;Jared M Brown;Carlos Roncal;Richard J. Johnson
  • 通讯作者:
    Richard J. Johnson
Ramsey numbers of cubes versus cliques
  • DOI:
    10.1007/s00493-014-3010-x
  • 发表时间:
    2014-11-05
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    David Conlon;Jacob Fox;Choongbum Lee;Benny Sudakov
  • 通讯作者:
    Benny Sudakov
Large almost monochromatic subsets in hypergraphs
  • DOI:
    10.1007/s11856-011-0016-6
  • 发表时间:
    2011-02-25
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    David Conlon;Jacob Fox;Benny Sudakov
  • 通讯作者:
    Benny Sudakov
On a problem of Duke–Erdős–Rödl on cycle-connected subgraphs
  • DOI:
    10.1016/j.jctb.2007.12.003
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jacob Fox;Benny Sudakov
  • 通讯作者:
    Benny Sudakov

Jacob Fox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Fox', 18)}}的其他基金

Additive Combinatorics and Ramsey theory
加法组合学和拉姆齐理论
  • 批准号:
    2154129
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Continuing Grant
Methods in Extremal Combinatorics
极值组合学方法
  • 批准号:
    1855635
  • 财政年份:
    2019
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Standard Grant
CAREER: Extremal Combinatorics: Methods, Problems, and Challenges
职业:极值组合学:方法、问题和挑战
  • 批准号:
    1554697
  • 财政年份:
    2015
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Continuing Grant
CAREER: Extremal Combinatorics: Methods, Problems, and Challenges
职业:极值组合学:方法、问题和挑战
  • 批准号:
    1352121
  • 财政年份:
    2014
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Continuing Grant
Problems in Ramsey theory and extremal combinatorics
拉姆齐理论和极值组合学中的问题
  • 批准号:
    1069197
  • 财政年份:
    2011
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
  • 批准号:
    2246484
  • 财政年份:
    2023
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic methods towards understanding complex human phenotypes using genomic and healthcare data
使用基因组和医疗数据理解复杂人类表型的概率方法
  • 批准号:
    RGPIN-2019-06216
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2139735
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Standard Grant
Probabilistic methods in KPZ universality and stochastic optimisation
KPZ 普适性和随机优化中的概率方法
  • 批准号:
    RGPIN-2020-06063
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    DGECR-2022-00431
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    RGPIN-2022-02961
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2140057
  • 财政年份:
    2022
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
  • 批准号:
    RGPIN-2019-03991
  • 财政年份:
    2021
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the shape of Triton's atmosphere using photometric light curves from satellite constellations and probabilistic estimation methods
使用卫星星座的光度曲线和概率估计方法对海卫一的大气形状进行建模
  • 批准号:
    532704-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 17.92万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了