Complex Dynamics in Higher Dimensions
高维中的复杂动力学
基本信息
- 批准号:1954335
- 负责人:
- 金额:$ 28.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A dynamical system, at its most general, is any set of circumstances or physical object—e.g., the economy, a viral epidemic, or a solar system—that evolves from one moment to the next according to definite mathematical rules. It is often important but quite difficult to use such moment-to-moment rules to predict the state of the system in the relatively distant future. Will a change in regulation lead to a speculative bubble? Will present interventions suffice to stop an outbreak? Will the solar system fly apart? In a broad mathematical sense, all of these questions reduce to understanding whether some aspect of the dynamical system in question is 'stable' or 'unstable'. That is, does it vary slowly and predictably as the system evolves, or is it prone to change rapidly and chaotically with a small variation in the system. The research in this project aims at better understanding the mathematics of dynamical systems, and in particular at determining and describing those parts of a system which are most unstable. Funding for this project will, among other things, support the principal investigator's graduate student as well as several undergraduates who are helping to run math circles for local K-12 students. It's broader impact will be further felt through the principal investigator's involvement with the Riverbend Math Center, which is a local independent non-profit organization dedicated to promoting math education at all levels.This project concerns problems in the intersection between analysis, complex algebraic geometry and dynamical systems. The problems stem from a very general program for constructing and analyzing measures of maximal entropy for rational self-maps of projective space. The work will prominently feature the particular case of rational maps preserving a meromorphic two form. Specific issues to be investigated include `algebraic stability' for degree growth of maps, the manufacture and intersection of dynamically natural closed currents to produce invariant measures, and combinatorial `train track' models for the dynamics of real automorphism on rational surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从最普遍的意义上来说,动态系统是任何一组环境或物理对象,例如经济、病毒流行病或太阳系,它们根据确定的数学规则从一个时刻到下一个时刻演变。使用这种即时规则来预测系统在相对遥远的未来的状态通常很重要,但相当困难。 监管的变化会导致投机泡沫吗? 目前的干预措施足以阻止疫情爆发吗? 太阳系会飞散吗? 从广泛的数学意义上来说,所有这些问题都归结为理解所讨论的动力系统的某些方面是“稳定”还是“不稳定”。 也就是说,它随着系统的发展而缓慢且可预测地变化,还是随着系统的微小变化而容易快速且混乱地变化。 该项目的研究旨在更好地理解动力系统的数学,特别是确定和描述系统中最不稳定的部分。 除其他外,该项目的资金将用于支持首席研究员的研究生以及帮助当地 K-12 学生开展数学圈的几名本科生。 通过首席研究员对 Riverbend 数学中心的参与,将进一步感受到其更广泛的影响,该中心是一个当地独立的非营利组织,致力于促进各级数学教育。该项目关注分析、复杂代数几何和动力系统之间的交叉问题。这些问题源于一个非常通用的程序,用于构建和分析射影空间理性自映射的最大熵度量。该作品将突出展示保留亚纯两种形式的有理图的特殊情况。 要研究的具体问题包括地图度数增长的“代数稳定性”、动态自然闭合电流的制造和交集以产生不变测量,以及有理表面上真实自同构动力学的组合“火车轨道”模型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持 标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entropy of Real Rational Surface Automorphisms
实有理面自同构的熵
- DOI:10.1080/10586458.2018.1516581
- 发表时间:2021
- 期刊:
- 影响因子:0.5
- 作者:Diller, Jeffrey;Kim, Kyounghee
- 通讯作者:Kim, Kyounghee
A transcendental dynamical degree
超越的动力程度
- DOI:10.4310/acta.2020.v225.n2.a1
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Bell, Jason P.;Diller, Jeffrey;Jonsson, Mattias
- 通讯作者:Jonsson, Mattias
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Diller其他文献
Failure of weak holomorphic averaging on multiple connected domains
- DOI:
10.1007/bf02571940 - 发表时间:
1994-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Jeffrey Diller - 通讯作者:
Jeffrey Diller
Jeffrey Diller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Diller', 18)}}的其他基金
Rational Dynamics on Complex Surfaces
复杂曲面上的有理动力学
- 批准号:
2246893 - 财政年份:2023
- 资助金额:
$ 28.65万 - 项目类别:
Standard Grant
Midwest Several Complex Variables Meeting
中西部多个复杂变量会议
- 批准号:
2034566 - 财政年份:2020
- 资助金额:
$ 28.65万 - 项目类别:
Standard Grant
Geometry and Ergodic Theory of Rational Maps
有理图的几何和遍历理论
- 批准号:
0653678 - 财政年份:2007
- 资助金额:
$ 28.65万 - 项目类别:
Standard Grant
Complex Dynamics in Higher Dimensions
高维中的复杂动力学
- 批准号:
0140408 - 财政年份:2002
- 资助金额:
$ 28.65万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508812 - 财政年份:1995
- 资助金额:
$ 28.65万 - 项目类别:
Fellowship Award
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Elucidation of complex gene expression regulation dynamics through higher-order genome structure
通过高阶基因组结构阐明复杂的基因表达调控动态
- 批准号:
19K06612 - 财政年份:2019
- 资助金额:
$ 28.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of implosion in complex dynamics in dimensions one and higher and its applications
一维及更高维复杂动力学的内爆理论及其应用
- 批准号:
16K05213 - 财政年份:2016
- 资助金额:
$ 28.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytic study of irrationally indifferent cycles in higher dimensional complex dynamics and non-archimedean dynamics
高维复杂动力学和非阿基米德动力学中非理性无差异循环的解析研究
- 批准号:
15K04924 - 财政年份:2015
- 资助金额:
$ 28.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytical studies of irrationally indifferent cycles in higher dimensional complex dynamics and Nevanlinna theory
高维复杂动力学中非理性无差异循环的分析研究和Nevanlinna理论
- 批准号:
21740096 - 财政年份:2009
- 资助金额:
$ 28.65万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Fixed points and critical points in higher dimensional complex dynamics
高维复杂动力学中的不动点和临界点
- 批准号:
21540176 - 财政年份:2009
- 资助金额:
$ 28.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex Dynamics in Higher Dimensions
高维中的复杂动力学
- 批准号:
0140408 - 财政年份:2002
- 资助金额:
$ 28.65万 - 项目类别:
Continuing Grant
Mathematical Sciences:NSF/CBMS Regional Conference in Mathematical Sciences-Complex Dynamics in Higher Dimensions; June 13-18, 1994; Albany, New York
数学科学:NSF/CBMS 数学科学区域会议 - 高维复杂动力学;
- 批准号:
9313042 - 财政年份:1994
- 资助金额:
$ 28.65万 - 项目类别:
Standard Grant














{{item.name}}会员




