Regularity Problems in Elliptic Equations
椭圆方程中的正则性问题
基本信息
- 批准号:1954363
- 负责人:
- 金额:$ 14.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the physical sciences, as well as economics, finance, and computer science, the fundamental laws are written in terms of partial differential equations (PDEs). For the quantity under study, these PDEs reveal the relation between the rates of change in different directions, and dictate the properties and evolution of the quantity. At the heart of the study of PDEs is a particular characteristic of solutions known as regularity. Theoretically, regularity is necessary to justify the models, and is the stepping stone for other properties of the solution (existence, uniqueness, and long term behavior). In practice, applications of the models involve numerical solutions of the PDEs and to obtain reasonable results requires stability of the solutions, which is often a consequence of regularity. Broadly speaking, objects that might seem rough often turn out to be regular if they satisfy an elliptic equation or constraint. The investigator will investigate three specific phenomena under this general philosophy: free interface problems, optimal transport maps, and free boundary problems. The results of this project will have numerous applications in other fields such as computer vision, data mining, machine learning, material sciences and biology.The first project will investigate interfaces arising in the study of liquid drops exposed to electric fields. The goal is to show that these interfaces are smooth in low spatial dimensions. This is related to an important conjecture in the physics literature. The second project concerns the optimal transport map between convex domains in Euclidean spaces. The plan is to show that without any extra assumptions on the domains, these maps can be very regular "up to the boundary". The third project is about free boundary problems, in particular problems involving multiple interacting free boundaries. In all three projects, new techniques are needed to incorporate geometric information. These techniques will be useful in addressing a wide range of problems that have been so far out of reach using current techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在物理科学、经济学、金融学和计算机科学中,基本定律都是用偏微分方程(PDEs)来表示的。对于所研究的数量,这些偏微分方程揭示了不同方向上的变化率之间的关系,并指示了数量的性质和演变。偏微分方程研究的核心是解的一个特殊特征,即规律性。从理论上讲,规律性对于证明模型是必要的,并且是解决方案的其他属性(存在性、唯一性和长期行为)的垫脚石。在实际应用中,模型的应用涉及到偏微分方程的数值解,为了得到合理的结果,需要解的稳定性,而这往往是正则性的结果。一般来说,看起来粗糙的物体往往是规则的,如果它们满足椭圆方程或约束。研究者将在这一一般哲学下研究三种具体现象:自由界面问题、最优运输图和自由边界问题。该项目的成果将在计算机视觉、数据挖掘、机器学习、材料科学和生物学等其他领域得到广泛应用。第一个项目将研究暴露在电场中的液滴研究中产生的界面。目标是证明这些界面在低空间维度上是光滑的。这与物理学文献中的一个重要猜想有关。第二个项目涉及欧几里得空间中凸域之间的最优传输映射。该计划旨在表明,在没有任何额外假设的情况下,这些地图可以非常规则地“直到边界”。第三个项目是关于自由边界问题,特别是涉及多个相互作用的自由边界的问题。在这三个项目中,都需要新的技术来整合几何信息。这些技术将有助于解决迄今为止使用当前技术无法解决的各种问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yash Jhaveri其他文献
Nonlinear bounds in Hölder spaces for the Monge–Ampère equation
- DOI:
10.1016/j.jfa.2015.11.004 - 发表时间:
2016-05-15 - 期刊:
- 影响因子:
- 作者:
Alessio Figalli;Yash Jhaveri;Connor Mooney - 通讯作者:
Connor Mooney
Predicting Doctor Ratings from User Reviews using Deep Learning
使用深度学习根据用户评论预测医生评分
- DOI:
10.1109/icaaic53929.2022.9793206 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yash Jhaveri;Tanay Gandhi;Tanay Naik;Shubh Nisar;Pankaj Sonawane - 通讯作者:
Pankaj Sonawane
On the singular set in the thin obstacle problem: higher-order blow-ups and the very thin obstacle problem
关于薄障碍问题中的奇异集:高阶爆炸和非常薄障碍问题
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
Xavier Fernández;Yash Jhaveri - 通讯作者:
Yash Jhaveri
The obstacle problem for a fractional Monge–Ampère equation
分数阶 Monge-Ampère 方程的障碍问题
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.9
- 作者:
Yash Jhaveri;P. R. Stinga - 通讯作者:
P. R. Stinga
Common Ground in Cooperative Communication
合作沟通的共同点
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xiaoran Hao;Yash Jhaveri;Patrick Shafto - 通讯作者:
Patrick Shafto
Yash Jhaveri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yash Jhaveri', 18)}}的其他基金
Regularity Problems in Elliptic Equations
椭圆方程中的正则性问题
- 批准号:
2243869 - 财政年份:2022
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
相似海外基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Regularity Problems in Elliptic Equations
椭圆方程中的正则性问题
- 批准号:
2243869 - 财政年份:2022
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
- 批准号:
417627993 - 财政年份:2019
- 资助金额:
$ 14.9万 - 项目类别:
Research Grants
Regularity Problems in the Calculus of Variations and Elliptic Partial Differential Equations
变分和椭圆偏微分方程中的正则问题
- 批准号:
1500438 - 财政年份:2015
- 资助金额:
$ 14.9万 - 项目类别:
Continuing Grant
Partial regularity and rigidity problems associated to geometric elliptic systems
与几何椭圆系统相关的部分正则性和刚性问题
- 批准号:
1104592 - 财政年份:2011
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Theory for Certain Nonlinear Elliptic Equations and Related Variational Problems Involving Derivatives of Rearrangement of Solutions
数学科学:某些非线性椭圆方程和涉及解重排导数的相关变分问题的正则理论
- 批准号:
8702532 - 财政年份:1987
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Theory for Certain Nonlinear Elliptic Equations and Related Variational Problems Involving Derivatives of Rearrangement of Solutions
数学科学:某些非线性椭圆方程和涉及解重排导数的相关变分问题的正则理论
- 批准号:
8896120 - 财政年份:1987
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Theory of Parametric Elliptic Variational Problems
数学科学:参数椭圆变分问题的正则理论
- 批准号:
8502806 - 财政年份:1985
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
The Regularity Theory of Parametric Elliptic Variational Problems
参数椭圆变分问题的正则理论
- 批准号:
8102549 - 财政年份:1981
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Regularity Theory of Parametric Elliptic Variational Problems
参数椭圆变分问题的正则理论
- 批准号:
7606633 - 财政年份:1976
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant














{{item.name}}会员




