Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations

自由边界和简并椭圆偏微分方程中的正则问题

基本信息

  • 批准号:
    2349794
  • 负责人:
  • 金额:
    $ 27.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop new methods for the mathematical theory in several problems of interest involving partial differential equations (PDE). The problems share some common features and are motivated by various physical phenomena such as the interaction of elastic membranes in contact with one another, jet flows of fluids, surfaces of minimal area, and optimal transportation between the elements of two regions. Advancement in the theoretical knowledge about these problems would be beneficial to the scientific community in general and possibly have applications to more concrete computational aspects of solving these equations numerically. The outcomes of the project will be disseminated at a variety of seminars and conferences. The project focuses on the regularity theory of some specific free boundary problems and nonlinear PDE. The first part is concerned with singularity formation in the Special Lagrangian equation. The equation appears in the context of calibrated geometries and minimal submanifolds. The Principal Investigator (PI) studies the stability of singular solutions under small perturbations together with certain degenerate Bellman equations that are relevant to their study. The second part of the project is devoted to free boundary problems. The PI investigates regularity questions that arise in the study of the two-phase Alt-Phillips family of free boundary problems. Some related questions concern rigidity of global solutions in low dimensions in the spirit of the De Giorgi conjecture. A second problem of interest involves coupled systems of interacting free boundaries. They arise in physical models that describe the configuration of multiple elastic membranes that are interacting with each other according to some specific potential. Another part of the project is concerned with the regularity of nonlocal minimal graphs and some related questions about the boundary Harnack principle for nonlocal operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是为涉及偏微分方程(PDE)的几个感兴趣的问题的数学理论开发新的方法。这些问题具有一些共同的特征,并且由各种物理现象激发,例如彼此接触的弹性膜的相互作用,流体的射流,最小面积的表面以及两个区域的元件之间的最佳运输。这些问题的理论知识的进步将有利于科学界的一般,并可能有应用程序,以更具体的计算方面,解决这些方程的数值。该项目的成果将在各种研讨会和会议上传播。 本项目主要研究一些特殊自由边界问题的正则性理论和非线性偏微分方程。第一部分是关于特殊拉格朗日方程中奇异性的形成。该方程出现在校准几何和极小子流形的上下文中。主要研究员(PI)研究小扰动下奇异解的稳定性以及与其研究相关的某些退化Bellman方程。第二部分是自由边界问题。PI研究在两相Alt-Phillips自由边界问题研究中出现的正则性问题。一些相关的问题涉及刚性的整体解决方案,在低维的德Giorgi猜想的精神。感兴趣的第二个问题涉及相互作用的自由边界的耦合系统。它们出现在描述多个弹性膜的结构的物理模型中,这些弹性膜根据某些特定的势相互作用。该项目的另一部分是关于非局部最小图的规律性和非局部算子的边界Harnack原理的一些相关问题。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ovidiu Savin其他文献

Boundary Hölder Gradient Estimates for the Monge–Ampère Equation
  • DOI:
    10.1007/s12220-020-00354-w
  • 发表时间:
    2020-02-08
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ovidiu Savin;Qian Zhang
  • 通讯作者:
    Qian Zhang

Ovidiu Savin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ovidiu Savin', 18)}}的其他基金

Interacting Free Boundaries in the Calculus of Variations
变分法中相互作用的自由边界
  • 批准号:
    2055617
  • 财政年份:
    2021
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Standard Grant
Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
  • 批准号:
    1800645
  • 财政年份:
    2018
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Standard Grant
Regularity Problems in the Calculus of Variations and Elliptic Partial Differential Equations
变分和椭圆偏微分方程中的正则问题
  • 批准号:
    1500438
  • 财政年份:
    2015
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
  • 批准号:
    1361131
  • 财政年份:
    2014
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Continuing Grant
Degenerate Elliptic Problems in Analysis and Geometry
分析和几何中的简并椭圆问题
  • 批准号:
    1200701
  • 财政年份:
    2012
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Standard Grant
Regularity of solutions to nonlinear elliptic PDEs
非线性椭圆偏微分方程解的正则性
  • 批准号:
    0701037
  • 财政年份:
    2007
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Continuing Grant

相似海外基金

Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
  • 批准号:
    2205710
  • 财政年份:
    2022
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Standard Grant
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
  • 批准号:
    417627993
  • 财政年份:
    2019
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Research Grants
Nonlinear free boundary problems: Propagation and regularity
非线性自由边界问题:传播和规律性
  • 批准号:
    DE170101410
  • 财政年份:
    2017
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Discovery Early Career Researcher Award
Regularity properties of stationary and evolution free boundary problems
平稳和自由演化边界问题的正则性
  • 批准号:
    1301535
  • 财政年份:
    2013
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Continuing Grant
Free boundary problems for flows with phase transitions consistent with thermodynamics based on maximal regularity theorem
基于最大正则定理的符合热力学的相变流动自由边界问题
  • 批准号:
    24340025
  • 财政年份:
    2012
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Free Boundary Regularity Problems in Harmonic Analysis
调和分析中的自由边界正则性问题
  • 批准号:
    0600915
  • 财政年份:
    2006
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Standard Grant
Free Boundary Problems with a Degenerate Phase: Regularity of Solutions and Interphases
具有简并相的自由边界问题:解和相间的正则性
  • 批准号:
    0503914
  • 财政年份:
    2005
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Standard Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
  • 批准号:
    0244834
  • 财政年份:
    2003
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics On Regularity Theory and Free Boundary Problems
数学科学:正则性理论和自由边界问题专题
  • 批准号:
    8802883
  • 财政年份:
    1988
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Evolution Free Boundary Problems and Regularity Theory
数学科学:无进化边界问题和正则性理论
  • 批准号:
    8502297
  • 财政年份:
    1985
  • 资助金额:
    $ 27.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了