Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
基本信息
- 批准号:2349794
- 负责人:
- 金额:$ 27.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop new methods for the mathematical theory in several problems of interest involving partial differential equations (PDE). The problems share some common features and are motivated by various physical phenomena such as the interaction of elastic membranes in contact with one another, jet flows of fluids, surfaces of minimal area, and optimal transportation between the elements of two regions. Advancement in the theoretical knowledge about these problems would be beneficial to the scientific community in general and possibly have applications to more concrete computational aspects of solving these equations numerically. The outcomes of the project will be disseminated at a variety of seminars and conferences. The project focuses on the regularity theory of some specific free boundary problems and nonlinear PDE. The first part is concerned with singularity formation in the Special Lagrangian equation. The equation appears in the context of calibrated geometries and minimal submanifolds. The Principal Investigator (PI) studies the stability of singular solutions under small perturbations together with certain degenerate Bellman equations that are relevant to their study. The second part of the project is devoted to free boundary problems. The PI investigates regularity questions that arise in the study of the two-phase Alt-Phillips family of free boundary problems. Some related questions concern rigidity of global solutions in low dimensions in the spirit of the De Giorgi conjecture. A second problem of interest involves coupled systems of interacting free boundaries. They arise in physical models that describe the configuration of multiple elastic membranes that are interacting with each other according to some specific potential. Another part of the project is concerned with the regularity of nonlocal minimal graphs and some related questions about the boundary Harnack principle for nonlocal operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是在涉及部分微分方程(PDE)的几个感兴趣的问题中开发数学理论的新方法。这些问题具有一些共同的特征,并由各种物理现象(例如彼此接触的弹性膜的相互作用),流体的喷射流,最小面积的表面以及两个区域元素之间的最佳运输。关于这些问题的理论知识的进步将对一般的科学界有益,并且可能在数值上求解这些方程式的更具体的计算方面。该项目的结果将在各种研讨会和会议上传播。 该项目着重于一些特定的自由边界问题和非线性PDE的规律性理论。第一部分与特殊拉格朗日方程中的奇异性形成有关。该方程式出现在校准的几何形状和最小的亚策略的背景下。首席研究者(PI)研究了在小扰动下奇异溶液的稳定性以及与其研究相关的某些退化钟形方程。该项目的第二部分致力于自由边界问题。 PI调查了对两相替补阶段的自由边界问题家族的研究时期出现的规律性问题。一些相关问题涉及全球解决方案在低维度的僵化,以de giorgi的猜想精神。感兴趣的第二个问题涉及相互作用的自由边界的耦合系统。它们出现在描述多个弹性膜的配置的物理模型中,这些弹性膜根据某些特定的潜力相互相互作用。该项目的另一部分涉及非局部最小图的规律性以及有关非本地运营商边界Harnack原理的一些相关问题。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来进行评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Savin其他文献
Ovidiu Savin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Savin', 18)}}的其他基金
Interacting Free Boundaries in the Calculus of Variations
变分法中相互作用的自由边界
- 批准号:
2055617 - 财政年份:2021
- 资助金额:
$ 27.39万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
- 批准号:
1800645 - 财政年份:2018
- 资助金额:
$ 27.39万 - 项目类别:
Standard Grant
Regularity Problems in the Calculus of Variations and Elliptic Partial Differential Equations
变分和椭圆偏微分方程中的正则问题
- 批准号:
1500438 - 财政年份:2015
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361131 - 财政年份:2014
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
Degenerate Elliptic Problems in Analysis and Geometry
分析和几何中的简并椭圆问题
- 批准号:
1200701 - 财政年份:2012
- 资助金额:
$ 27.39万 - 项目类别:
Standard Grant
Regularity of solutions to nonlinear elliptic PDEs
非线性椭圆偏微分方程解的正则性
- 批准号:
0701037 - 财政年份:2007
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
相似国自然基金
趋化模型自由边界问题解的渐近性分析
- 批准号:12301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
理想磁流体力学中的自由边界问题
- 批准号:12371225
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
三维斑块生长自由边界问题稳态解的稳定性研究
- 批准号:12301246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
移动环境中非局部扩散自由边界问题的传播动力学
- 批准号:12361039
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
高维流体力学方程组的自由边界问题研究
- 批准号:12371211
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 27.39万 - 项目类别:
Standard Grant
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
- 批准号:
417627993 - 财政年份:2019
- 资助金额:
$ 27.39万 - 项目类别:
Research Grants
Nonlinear free boundary problems: Propagation and regularity
非线性自由边界问题:传播和规律性
- 批准号:
DE170101410 - 财政年份:2017
- 资助金额:
$ 27.39万 - 项目类别:
Discovery Early Career Researcher Award
Regularity properties of stationary and evolution free boundary problems
平稳和自由演化边界问题的正则性
- 批准号:
1301535 - 财政年份:2013
- 资助金额:
$ 27.39万 - 项目类别:
Continuing Grant
Free boundary problems for flows with phase transitions consistent with thermodynamics based on maximal regularity theorem
基于最大正则定理的符合热力学的相变流动自由边界问题
- 批准号:
24340025 - 财政年份:2012
- 资助金额:
$ 27.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)