IIBR Informatics: A generalized modeling framework for integrating multi-species data sources to estimate biodiversity processes
IIBR 信息学:整合多物种数据源以估计生物多样性过程的通用建模框架
基本信息
- 批准号:1954406
- 负责人:
- 金额:$ 78.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biodiversity is linked to the health and integrity of ecosystems with species varying in their contributions to ecosystem functions. It is critical to assess the status and dynamics of whole communities of species and not just those species that have large amounts of data. This project develops ‘integrated community models’, a statistical modeling framework to simultaneously use multi-species data sources to estimate the status, trends, and dynamics of biodiversity. The objective is to create a flexible infrastructure for estimating species and community processes that can incorporate multiple data types on multiple species through simulations and empirical case studies on animal communities including birds, small mammals, and butterflies. Estimates of species distributions, abundances, and demographic rates form the basis of scientific understanding of biodiversity dynamics and community responses to external threats, delivering critical information for biological conservation. The development of integrated community models will enable researchers to obtain detailed inferences on species and communities across spatiotemporal scales during an era of accelerated biodiversity loss. This project also provides training to graduate students and postdoctoral scholars in hierarchical statistical modeling and creates a K-12 outreach module to teach middle school students about biolodiversity conservation.The integrated community modeling framework uses a hierarchical approach merging single-species integrated models (which combine multiple data sources on a target species) and hierarchical community models (which estimate multi-species occurrence or abundance patterns but only from a single data source). Although there have been recent advances in single-species integrated models and hierarchical community models, both approaches have shortcomings: the former is limited to a single species, whereas the latter fails to take advantage of the benefits gained from merging multiple data sources and data types (e.g. estimation of both abundance and demographic rates simultaneously, increased spatiotemporal coverage). By bridging the gap between single-species integrated models and hierarchical community models, integrated community models leverage the capabilities of both and overcome traditionally narrow inferences (in terms of space, time, and information gained) on biodiversity parameters. The modeling framework uses each of the different available data sources to inform various components of the underlying biological process model through hierarchical, observation models linked together with a joint likelihood. The biological process models for communities can range from simple (e.g. estimates of species occurrence) to complex (e.g. estimates of species survival, reproduction, and abundance) and depend on both the biology of the taxonomic group and the quantity/type of available data. This project advances the fields of population and community ecology because it allows scientists to take advantage of multiple data sources (despite differences in sampling protocols and spatiotemporal data structures and quantities), leading to increased accuracy and precision of species-level dynamics and biodiversity metrics (e.g. richness, composition). The results of the project will be made available at https://ezipkin.github.io.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物多样性与生态系统的健康和完整性有关,不同物种对生态系统功能的贡献各不相同。至关重要的是要评估整个物种群落的状况和动态,而不仅仅是那些拥有大量数据的物种。该项目开发了“综合社区模型”,这是一个统计建模框架,可以同时使用多物种数据源来估计生物多样性的状态,趋势和动态。其目标是创建一个灵活的基础设施,用于估计物种和社区过程,可以通过对包括鸟类,小型哺乳动物和蝴蝶在内的动物群落的模拟和经验案例研究,将多个物种的多种数据类型结合起来。对物种分布、丰度和人口比例的估计构成了对生物多样性动态和社区对外部威胁的反应的科学理解的基础,为生物保护提供了重要信息。综合群落模型的开发将使研究人员能够在生物多样性加速丧失的时代获得关于跨时空尺度的物种和群落的详细推断。该项目还为研究生和博士后学者提供分层统计建模方面的培训,并创建一个K-12外展模块来教授中学生有关生物多样性保护的知识。综合社区建模框架使用分层方法合并单物种综合模型(联合收割机结合目标物种的多个数据源)和层次群落模型(估计多物种出现或丰度模式,但仅从单一数据来源)。虽然最近在单物种综合模型和分层群落模型方面取得了进展,但这两种方法都有缺点:前者仅限于单一物种,而后者未能利用合并多个数据来源和数据类型所带来的好处(例如,同时估计丰度和人口统计率,增加时空覆盖面)。通过弥合单物种综合模型和等级群落模型之间的差距,综合群落模型利用了两者的能力,克服了传统上对生物多样性参数的狭隘推断(在空间,时间和信息方面)。该建模框架使用每个不同的可用数据源,通过与联合可能性链接在一起的分层观察模型来为基础生物过程模型的各个组件提供信息。群落的生物过程模型可以从简单的(例如物种出现的估计)到复杂的(例如物种生存、繁殖和丰度的估计),并取决于分类组的生物学和现有数据的数量/类型。该项目推进了人口和社区生态学领域,因为它使科学家能够利用多种数据源(尽管采样协议和时空数据结构和数量存在差异),从而提高物种水平动态和生物多样性指标(例如丰富度,组成)的准确性和精确性。该项目的结果将在www.example.com上公布https://ezipkin.github.io.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Breeding season management is unlikely to improve population viability of a data-deficient migratory species in decline
繁殖季节管理不太可能改善数据缺乏的迁徙物种的种群生存能力
- DOI:10.1016/j.biocon.2023.110104
- 发表时间:2023
- 期刊:
- 影响因子:5.9
- 作者:Davis, Kayla L.;Saunders, Sarah P.;Beilke, Stephanie;Ford, Erin Rowan;Fuller, Jennifer;Landgraf, Ava;Zipkin, Elise F.
- 通讯作者:Zipkin, Elise F.
Integrated Population Models: Achieving Their Potential
- DOI:10.1007/s42519-022-00302-7
- 发表时间:2022-11
- 期刊:
- 影响因子:0.6
- 作者:Fay Frost;R. McCrea;Ruth King;O. Gimenez;Elise F. Zipkin
- 通讯作者:Fay Frost;R. McCrea;Ruth King;O. Gimenez;Elise F. Zipkin
Accounting for sources of uncertainty when forecasting population responses to climate change
预测人口对气候变化的反应时考虑不确定性来源
- DOI:10.1111/1365-2656.13443
- 发表时间:2021
- 期刊:
- 影响因子:4.8
- 作者:Zylstra, Erin R.;Zipkin, Elise F.
- 通讯作者:Zipkin, Elise F.
Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance
- DOI:10.1111/2041-210x.13578
- 发表时间:2021-03-06
- 期刊:
- 影响因子:6.6
- 作者:Doser, Jeffrey W.;Finley, Andrew O.;Zipkin, Elise F.
- 通讯作者:Zipkin, Elise F.
Propagating uncertainty in ecological models to understand causation
- DOI:10.1002/fee.2610
- 发表时间:2023-04
- 期刊:
- 影响因子:10.3
- 作者:Neil A. Gilbert;H. Eyster;Elise F. Zipkin
- 通讯作者:Neil A. Gilbert;H. Eyster;Elise F. Zipkin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elise Zipkin其他文献
Elise Zipkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elise Zipkin', 18)}}的其他基金
Collaborative Research: MRA: Estimating and forecasting nonstationary, multi-scale climate and land-use effects on avian communities
合作研究:MRA:估计和预测非平稳、多尺度气候和土地利用对鸟类群落的影响
- 批准号:
2213565 - 财政年份:2023
- 资助金额:
$ 78.27万 - 项目类别:
Continuing Grant
Collaborative Research: Consistencies and contingencies of functional responses to environmental changes in tropical forests
合作研究:热带森林环境变化功能响应的一致性和偶然性
- 批准号:
2016347 - 财政年份:2020
- 资助金额:
$ 78.27万 - 项目类别:
Standard Grant
Collaborative Proposal: RAPID: How do extreme flooding events impact migratory species?
合作提案:RAPID:极端洪水事件如何影响迁徙物种?
- 批准号:
1818898 - 财政年份:2018
- 资助金额:
$ 78.27万 - 项目类别:
Standard Grant
Collaborative Proposal: MSB-ECA: A multi-scale framework to quantify and forecast population changes and associated uncertainties
合作提案:MSB-ECA:量化和预测人口变化及相关不确定性的多尺度框架
- 批准号:
1702635 - 财政年份:2017
- 资助金额:
$ 78.27万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Program for Access to Training in Health Informatics (PATHI)
REU 网站:健康信息学培训计划 (PATHI)
- 批准号:
2348793 - 财政年份:2024
- 资助金额:
$ 78.27万 - 项目类别:
Standard Grant
Travel: IEEE International Conference on Healthcare Informatics (IEEE ICHI 2024) Doctoral Consortium Travel Scholarship
旅行:IEEE 国际医疗信息学会议 (IEEE ICHI 2024) 博士联盟旅行奖学金
- 批准号:
2414093 - 财政年份:2024
- 资助金额:
$ 78.27万 - 项目类别:
Standard Grant
Reliable Tensor-Network Fusion Approach to Medical Informatics: Novel Techniques and Benchmarks
可靠的张量网络融合医学信息学方法:新技术和基准
- 批准号:
24K03005 - 财政年份:2024
- 资助金额:
$ 78.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 78.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Travel: NSF Student Travel Grant for 2023 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)
旅行:2023 年 IEEE-EMBS 国际生物医学和健康信息学会议 (BHI) 的 NSF 学生旅行补助金
- 批准号:
2331680 - 财政年份:2023
- 资助金额:
$ 78.27万 - 项目类别:
Standard Grant
CAREER: Transforming Personal Informatics Systems to Support Routine Transitions in Healthy Eating
职业:转变个人信息系统以支持健康饮食的常规转变
- 批准号:
2414270 - 财政年份:2023
- 资助金额:
$ 78.27万 - 项目类别:
Continuing Grant
Pioneering Research of industrial materials informatics for innovative lithium battery anodes
创新锂电池阳极工业材料信息学的开创性研究
- 批准号:
23K18465 - 财政年份:2023
- 资助金额:
$ 78.27万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
$ 78.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 78.27万 - 项目类别:
Establishment of polymer informatics incorporating polymer-specific hierarchy and search for new electrolytes
建立结合聚合物特定层次结构的聚合物信息学并寻找新的电解质
- 批准号:
23H02027 - 财政年份:2023
- 资助金额:
$ 78.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




